图结构解析:事件发生时间计算与图遍历
需积分: 9 65 浏览量
更新于2024-07-13
收藏 5.27MB PPT 举报
"该资源是一份关于数据结构中图理论的PPT,主要涵盖了图的定义、存储表示、遍历、最小生成树、最短路径、拓扑排序以及关键路径等核心概念。"
在计算机科学中,图是一种重要的数据结构,用于表示对象之间的关系。在图论中,一个图由一个顶点集V和一个边集R组成,记为Graph=(V,R),其中R包含了所有从一个顶点到另一个顶点的连接。如果边是双向的,即每条边(v, w)都对应一条(w, v),那么这个图被称为无向图;反之,如果边是有方向的,我们称之为有向图。
7.2章节介绍了图的存储表示,通常有两种基本方法:邻接矩阵和邻接表。邻接矩阵是一个二维数组,其中的元素表示顶点之间的连接性;而邻接表则是以链表形式存储每个顶点的所有邻接点,适合表示稀疏图,因为它节省空间。
7.3章节涉及图的遍历,包括深度优先搜索(DFS)和广度优先搜索(BFS)。DFS通过递归或栈来访问所有可达的顶点,而BFS使用队列,先访问离起点近的顶点。
7.4章节讲解了最小生成树,这是一种选择图中边的子集,使得这子集形成的树覆盖了所有顶点,并且总权重尽可能小。常见的算法有Prim算法和Kruskal算法。
7.5章节讨论了两点之间最短路径的问题,Dijkstra算法是解决单源最短路径问题的常见方法,而Floyd-Warshall算法可以找到所有顶点对间的最短路径。
7.6章节拓扑排序是应用于有向无环图(DAG)的排序算法,可以将顶点排成线性顺序,使得对于每条边(u, v),u总是在v之前。
7.7章节关键路径是项目管理中的一个重要概念,用于确定完成项目所需的最短时间。在有向带权图中,关键路径是从源点到汇点的最长路径,它决定了项目的最早可能完成时间。
在图的计算中,经常需要用到事件发生时间的计算公式,如题目所给的:"ve(源点) = 0;ve(k) = Max{ve(j) + dut(<j, k>)};vl(汇点) = ve(汇点);vl(j) = Min{vl(k) – dut(<j, k>)}",这是求关键路径中活动最早开始时间(ve)和最晚开始时间(vl)的动态规划方法,其中dut(<j, k>)表示从顶点j到顶点k的活动持续时间。
这个PPT详细阐述了图的各个方面,对于理解图论在计算机科学中的应用非常有帮助,无论是理论学习还是实际编程都是宝贵的参考资料。
2010-01-28 上传
2010-04-23 上传
2021-10-12 上传
2022-07-11 上传
2011-05-31 上传
721 浏览量
2024-05-07 上传
2022-06-01 上传
2021-05-11 上传
ServeRobotics
- 粉丝: 37
- 资源: 2万+
最新资源
- JHU荣誉单变量微积分课程教案介绍
- Naruto爱好者必备CLI测试应用
- Android应用显示Ignaz-Taschner-Gymnasium取消课程概览
- ASP学生信息档案管理系统毕业设计及完整源码
- Java商城源码解析:酒店管理系统快速开发指南
- 构建可解析文本框:.NET 3.5中实现文本解析与验证
- Java语言打造任天堂红白机模拟器—nes4j解析
- 基于Hadoop和Hive的网络流量分析工具介绍
- Unity实现帝国象棋:从游戏到复刻
- WordPress文档嵌入插件:无需浏览器插件即可上传和显示文档
- Android开源项目精选:优秀项目篇
- 黑色设计商务酷站模板 - 网站构建新选择
- Rollup插件去除JS文件横幅:横扫许可证头
- AngularDart中Hammock服务的使用与REST API集成
- 开源AVR编程器:高效、低成本的微控制器编程解决方案
- Anya Keller 图片组合的开发部署记录