改进的IMOEA/D算法:多目标柔性作业车间调度的鲁棒优化

6 下载量 174 浏览量 更新于2024-08-26 2 收藏 251KB PDF 举报
"本文主要探讨了在具有发布时间不确定性的多目标柔性作业车间调度问题中,如何通过改进的多目标进化算法实现鲁棒调度。作者构建了一个名为MOFJSSP-RTU的数学模型,该模型同时考虑了制造时间跨度、拖延性和稳定性,以应对不确定性。文中提出了一种改进的基于分解的多目标进化算法(IMOEA/D),用于处理这个问题,其创新之处在于采用了新的子问题更新策略,结合修复式交叉操作和自适应差分进化变异操作,以优化探索与开发的平衡。实验结果表明,基于IMOEA/D的鲁棒调度方法在收敛性能和解决方案分布上优于传统的多目标优化进化算法,并能展示出不同目标间的权衡特性。" 本文关注的是在实际生产环境中,由于发布时间的不确定性,多目标柔性作业车间调度问题变得更加复杂。柔性作业车间调度(Flexible Job Shop Scheduling Problem, FJSP)是一个经典的优化问题,通常涉及多个相互冲突的目标,如最小化制造时间跨度(Make-span)、减少任务延误(Tardiness)以及提高调度的鲁棒性。在MOFJSSP-RTU模型中,这些目标被综合考虑,同时考虑到各种约束条件。 为了解决这个具有挑战性的问题,作者提出了一个改进的多目标进化算法(Improved Multi-objective Evolutionary Algorithm based on Decomposition, IMOEA/D)。这种算法的核心改进是引入了新的子问题更新策略,该策略能够利用全局信息,使存档中的精英解参与到子代的生成中。这种设计有助于保留优秀解的同时,促进算法的多样性,防止早熟收敛。 此外,文章还结合了修复式交叉操作(Repair-based Crossover Operator)和自适应差分进化变异操作(Adaptive Differential Evolution-based Mutation Operator),这两者分别用于增强算法的局部搜索能力和全局搜索能力,以达到更好的收敛效果和解决方案分布。实验部分对比了基于IMOEA/D的鲁棒调度方法与其他最新多目标优化算法的性能,证明了其优越性。 这篇论文提供了一种有效应对具有发布时间不确定性的多目标柔性作业车间调度问题的解决方案,对于优化调度策略,提升生产效率,以及处理现实世界中的不确定性问题具有重要的理论和实践价值。

4 Experiments This section examines the effectiveness of the proposed IFCS-MOEA framework. First, Section 4.1 presents the experimental settings. Second, Section 4.2 examines the effect of IFCS on MOEA/D-DE. Then, Section 4.3 compares the performance of IFCS-MOEA/D-DE with five state-of-the-art MOEAs on 19 test problems. Finally, Section 4.4 compares the performance of IFCS-MOEA/D-DE with five state-of-the-art MOEAs on four real-world application problems. 4.1 Experimental Settings MOEA/D-DE [23] is integrated with the proposed framework for experiments, and the resulting algorithm is named IFCS-MOEA/D-DE. Five surrogate-based MOEAs, i.e., FCS-MOEA/D-DE [39], CPS-MOEA [41], CSEA [29], MOEA/DEGO [43] and EDN-ARM-OEA [12] are used for comparison. UF1–10, LZ1–9 test problems [44, 23] with complicated PSs are used for experiments. Among them, UF1–7, LZ1–5, and LZ7–9 have 2 objectives, UF8–10, and LZ6 have 3 objectives. UF1–10, LZ1–5, and LZ9 are with 30 decision variables, and LZ6–8 are with 10 decision variables. The population size N is set to 45 for all compared algorithms. The maximum number of FEs is set as 500 since the problems are viewed as expensive MOPs [39]. For each test problem, each algorithm is executed 21 times independently. For IFCS-MOEA/D-DE, wmax is set to 30 and η is set to 5. For the other algorithms, we use the settings suggested in their papers. The IGD [6] metric is used to evaluate the performance of each algorithm. All algorithms are examined on PlatEMO [34] platform.

2023-05-24 上传