关系数据库索引设计与优化

5星 · 超过95%的资源 需积分: 22 40 下载量 180 浏览量 更新于2024-07-17 收藏 7.43MB PDF 举报
"关系型数据库索引设计与优化器" 在关系型数据库中,索引设计是提高查询性能的关键因素,而优化器则是决定查询执行效率的核心组件。这本书"Relational Database Index Design and the Optimizers"深入探讨了DB2、Oracle、SQL Server等主流数据库系统中的索引设计和查询优化策略。 索引设计: 1. **类型选择**:索引有多种类型,如B树(B-Tree)、哈希索引、位图索引和全文索引等。B树索引适用于范围查询和排序,哈希索引则适用于等值查询,位图索引适合于低基数(少量不同值)的列,全文索引用于全文搜索。 2. **复合索引**:当查询涉及多个字段时,可以创建复合索引来提高查询效率,索引的顺序应根据查询条件的频率和选择性来确定。 3. **唯一性**:索引可以是唯一的,确保索引项的唯一性,这有助于提高查询速度,但也可能增加数据插入时的开销。 4. **覆盖索引**:如果索引包含查询需要的所有列,这样的索引被称为覆盖索引,使用覆盖索引可以避免回表操作,显著提升查询速度。 优化器: 1. **成本模型**:优化器通过计算不同执行计划的成本来选择最佳路径。成本通常基于扫描次数、连接操作、排序和索引查找等因素。 2. **统计信息**:优化器依赖于准确的统计信息来估计行数和选择性,以便计算查询成本。定期更新统计信息能帮助优化器做出更精确的决策。 3. **查询重写**:优化器可能会对查询进行重写,例如,通过合并连接操作,或者将子查询转换为连接操作,以减少执行时间和资源消耗。 4. **并行查询**:优化器还可以决定是否利用多核处理器的并行执行能力,通过并行化查询来加速处理。 5. **内存管理**:优化器会考虑内存资源的分配,以平衡I/O和CPU的使用,确保高效的查询执行。 6. **索引选择**:优化器会考虑使用哪些索引,甚至在某些情况下决定不使用索引,以避免因索引维护而产生的额外开销。 书籍可能详细讲解了如何根据特定数据库系统的特性来设计和调整索引,以及如何分析和改进优化器的性能。同时,还可能涵盖了如何理解和使用查询执行计划,以及如何通过监控和调整数据库参数来进一步优化性能。 对于Java开发人员来说,理解这些概念和技术可以帮助他们编写更高效的SQL查询,设计出更适合应用需求的数据库架构,从而提升整个系统的性能。
2013-05-15 上传
Relational databases have been around now for more than 20 years. In their early days, performance problems were widespread due to limited hardware resources and immature optimizers, and so performance was a priority consideration. The situation is very different nowadays; hardware and software have advanced beyond all recognition. It’s hardly surprising that performance is now assumed to be able to take care of itself! But the reality is that despite the huge growth in resources, even greater growth has been seen in the amount of information that is now available and what needs to be done with this information. Additionally, one crucial aspect of the hardware has not kept pace with the times: Disks have certainly become larger and incredibly cheap, but they are still relatively slow with regards to their ability to directly access data. Consequently many of the old problems haven’t actually gone away—they have just changed their appearance. Some of these problems can have enormous implications— stories abound of “simple” queries that might have been expected to take a fraction of a second appear to be quite happy to take several minutes or even longer; this despite all the books that tell us how to code queries properly and how to organize the tables and what rules to follow to put the right columns into the indexes. So it is abundantly clear that there is a need for a book that goes beyond the usual boundaries and really starts to think about why so many people are still having so many problems today.