机器学习实战:基于Scikit-Learn与TensorFlow
需积分: 10 176 浏览量
更新于2024-07-19
收藏 55.4MB PDF 举报
"Hands-On Machine Learning with Scikit-Learn & TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems" 是一本由 Aurélien Géron 编写的实战型机器学习书籍,内容涵盖彩印,适合读者深入理解和实践。
这本书是关于机器学习的实践指南,主要聚焦于两个流行的开源库——Scikit-Learn 和 TensorFlow。Scikit-Learn 是Python中最广泛使用的机器学习库之一,提供了一系列简洁、高效的工具,用于数据挖掘和数据分析。而 TensorFlow 是 Google 开发的一个强大的深度学习框架,适用于构建复杂的神经网络模型。
在书中,作者Aurélien Géron将引导读者通过机器学习的基础概念,包括监督学习、无监督学习和强化学习。他不仅介绍了各种算法,如线性回归、逻辑回归、决策树、随机森林、支持向量机、聚类算法等,还探讨了如何预处理数据、特征工程以及模型评估等关键步骤。
对于 TensorFlow 部分,书中将详细讲解深度学习的基本原理,如神经网络的构建、反向传播算法、优化器的选择以及损失函数的运用。读者可以学习到如何使用 TensorFlow 构建卷积神经网络(CNN)进行图像识别,使用循环神经网络(RNN)处理序列数据,如文本和语音,以及如何应用强化学习来训练智能体。
此外,书中还涵盖了实用的机器学习技术,如集成学习、网格搜索、交叉验证和模型选择,这些都是提高模型性能的重要策略。Géron 还讨论了如何避免过拟合和欠拟合,以及在实践中遇到的挑战,如数据不平衡问题。
最后,这本书鼓励读者通过实际项目来巩固所学知识,提供了多个案例研究,包括垃圾邮件分类、房价预测、手写数字识别等,这些项目可以帮助读者将理论知识转化为实际技能。
"Hands-On Machine Learning with Scikit-Learn & TensorFlow" 是一本全面的机器学习教程,适合有一定 Python 编程基础并希望深入了解和应用机器学习技术的读者。通过阅读此书,读者不仅可以掌握机器学习的核心概念和工具,还能学会如何在现实世界中构建智能系统。
点击了解资源详情
点击了解资源详情
点击了解资源详情
2018-07-25 上传
2018-07-20 上传
2017-10-15 上传
2017-11-04 上传
2018-02-07 上传
点击了解资源详情
jokerknightKasa
- 粉丝: 0
- 资源: 2
最新资源
- 俄罗斯RTSD数据集实现交通标志实时检测
- 易语言开发的文件批量改名工具使用Ex_Dui美化界面
- 爱心援助动态网页教程:前端开发实战指南
- 复旦微电子数字电路课件4章同步时序电路详解
- Dylan Manley的编程投资组合登录页面设计介绍
- Python实现H3K4me3与H3K27ac表观遗传标记域长度分析
- 易语言开源播放器项目:简易界面与强大的音频支持
- 介绍rxtx2.2全系统环境下的Java版本使用
- ZStack-CC2530 半开源协议栈使用与安装指南
- 易语言实现的八斗平台与淘宝评论采集软件开发
- Christiano响应式网站项目设计与技术特点
- QT图形框架中QGraphicRectItem的插入与缩放技术
- 组合逻辑电路深入解析与习题教程
- Vue+ECharts实现中国地图3D展示与交互功能
- MiSTer_MAME_SCRIPTS:自动下载MAME与HBMAME脚本指南
- 前端技术精髓:构建响应式盆栽展示网站