自适应流形滤波高光谱图像分类算法研究
56 浏览量
更新于2024-08-28
收藏 15.14MB PDF 举报
基于自适应流形滤波的高光谱图像分类方法
本文提出了一种基于自适应流形滤波的高光谱图像分类方法(AMF-SVM),该方法可以有效地提取高光谱图像的空间纹理信息,并实现高精度的图像分类。该方法的核心是自适应流形滤波技术,该技术可以根据流形树高度进行递归投射、平滑和聚合处理,从而获取高质量的空间特征。
该方法的优点是可以避免传统滤波方法中的局部特征提取问题,提高了图像分类的精度。实验结果表明,AMF-SVM方法相比于使用光谱信息、高光谱降维、空谱信息结合的SVM分类方法,边缘保持滤波以及递归滤波的方法,具有更高的分类精度。
自适应流形滤波技术的关键是自适应寻优算法,该算法可以根据流形树高度进行自适应调整,确保了滤波结果的优化。同时,该方法还结合了支持向量机(SVM)分类技术,进一步提高了图像分类的准确性。
本文的贡献在于提出了一种新的高光谱图像分类方法,该方法可以有效地解决高光谱图像分类中的局部特征提取问题,提高了图像分类的精度和速度。
知识点:
1. 高光谱图像分类:高光谱图像分类是将高光谱图像分为不同的类别,以便对图像进行分析和理解。高光谱图像分类方法有很多,如支持向量机(SVM)、随机森林(RF)等。
2. 自适应流形滤波:自适应流形滤波是一种基于流形理论的滤波技术,该技术可以根据流形树高度进行自适应调整,获取高质量的空间特征。
3. 空间纹理信息:空间纹理信息是指高光谱图像中的空间结构信息,如边缘、角点、纹理等。
4. 全局寻优:全局寻优是一种优化算法,该算法可以根据流形树高度进行自适应调整,确保了滤波结果的优化。
5. 支持向量机(SVM):支持向量机是一种常用的分类算法,该算法可以将高光谱图像分为不同的类别,以便对图像进行分析和理解。
6. 高光谱图像处理:高光谱图像处理是指对高光谱图像进行处理和分析,以提取有用的信息。
7. 图像分类:图像分类是指将图像分为不同的类别,以便对图像进行分析和理解。
8. 流形理论:流形理论是一种数学理论,该理论可以描述高维空间中的几何结构。
9. 递归滤波:递归滤波是一种滤波技术,该技术可以根据流形树高度进行递归处理,获取高质量的空间特征。
10. 边缘保持滤波:边缘保持滤波是一种滤波技术,该技术可以保持图像边缘信息,提高图像分类的准确性。
121 浏览量
点击了解资源详情
106 浏览量
2021-03-04 上传
173 浏览量
173 浏览量
106 浏览量
167 浏览量
weixin_38627603
- 粉丝: 0
- 资源: 897
最新资源
- 带日历的VB圆形的模拟时钟代码
- apache-maven-3.6.0-bin.rar
- delphi人才信息管理系统.zip
- 涂料、裱煳、刷浆木材表面施涂溶剂型混色涂料施工工艺标准
- react-advance
- personal-rank-implemented-by-CPP
- Onliner.by конвертер цен-crx插件
- 新疆某钢厂钢结构厂房工程施工组织设计
- 粤语报时示例.rar
- linux-sk:-基于ZEN的内核,具有其他功能
- Определение CMS - iTrack-crx插件
- 密码学:国王密码学课程的python游乐场
- github-slideshow:机器人提供动力的培训资料库
- 价格区间滑块
- fsm
- 51单片机驱动12864液晶显示(有字库)程序(汇编)keil工程文件C源文件