模式识别试题与答案解析

需积分: 9 4 下载量 88 浏览量 更新于2024-09-13 收藏 146KB DOC 举报
"模式识别习题,包含2007年考试内容,涉及模式识别的基础概念和算法,适合复习和学习。" 这篇资料主要涵盖了模式识别领域的基础知识点,包括模式识别系统的构成、模式描述方法、分类算法以及相关数学原理。以下是详细解释: 1. **模式识别系统的基本构成**:一个基本的模式识别系统由三个主要部分组成:模式采集、特征提取与选择、模式分类。模式采集是获取原始数据的过程,特征提取是将原始数据转化为有意义的特征,而模式分类则是基于这些特征对模式进行分类。 2. **模式描述方法**:在统计模式识别中,通常使用特征矢量来描述模式;而在句法模式识别中,模式可以用串、树或网结构来表示。 3. **分类方法**:聚类分析算法是无监督分类的一种,它不依赖预先存在的类别信息;判别域代数界面方程法则属于统计模式识别方法。 4. **相似性度量**:对于0-1二值特征量,一般使用匹配测度来衡量模式间的相似性。 5. **准则函数**:在聚类分析中,某些函数如平方和、平方差或互信息可以作为准则函数。 6. **Fisher线性判别函数**:该函数的目标是将特征矢量投影到一维空间中,以最大化类间差异并最小化类内差异。 7. **判别域界面方程法**:感知器算法适用于线性可分情况,而H-K算法和积累位势函数法则既适用于线性可分也适用于线性不可分的情况。 8. **文法定义**:文法定义了一组规则,用于描述语言或模式的生成方式,题目中列举的四元组示例展示了文法规则的应用。 二、简答及证明题: 1. **影响聚类结果的因素**:聚类结果可能受分类准则、模式相似性测度、特征选择和量纲等因素的影响。 2. **马氏距离的性质**:马氏距离具有平移不变性和非奇异线性变换不变性,这意味着它不受数据集整体平移和非奇异线性变换的影响。 三、**线性判别函数的意义**:线性判别函数的正负和数值大小指示了样本点与分类超平面之间的距离和相对位置,其绝对值越大,代表样本点与分类边界的距离越远,分类确定性越高。 以上知识点是模式识别学习的基础,涵盖了从理论概念到实际应用的重要内容,对于理解和掌握模式识别技术至关重要。