基于神经网络的VAV空调解耦控制策略提升与工程应用
需积分: 11 26 浏览量
更新于2024-07-26
1
收藏 5.6MB PDF 举报
本篇硕士论文主要聚焦于"基于神经网络的变风量空调系统前馈解耦控制"的研究。变风量空调系统(VAV)因其节能、舒适性和灵活性,已成为现代空调系统中的主流选择。然而,VAV系统的复杂性在于其多变量、强耦合、非线性和时变性,这使得其控制挑战重重,限制了其广泛的应用。
作者张志强以上海古北财富中心的VAV系统项目为研究背景,针对系统稳定运行的问题,深入探讨了VAV系统的耦合特性。首先,论文分析了变风量空调系统常见的控制方式及其原理,揭示了控制难点以及不同控制回路间的相互影响。为了确保系统稳定性,论文将VAV系统分解为机组部分和末端部分,从系统内部工作原理出发进行了详细分析,并通过实验测试获取了精确的数学模型和参数。
在此基础上,作者创新性地提出了基于神经网络的多变量解耦控制策略,设计了一种BP神经网络解耦器结构,结合动量项的梯度下降学习算法。这种方法不仅实现了系统的解耦,还允许神经网络在运行过程中自我调整控制规则,显示出良好的解耦性和鲁棒性。此外,论文还涉及单神经元PID控制器的设计,这种控制器学习算法简单,适合工程实践。
文章的核心内容是关于神经网络解耦技术的应用,它能够减少对系统对象模型的依赖,通过学习过程优化控制性能。此外,作者还讨论了智能解耦控制算法在工程实现中的优缺点,并特别设计了一种基于CARE(控制器增益矩阵递归算法)的神经网络解耦器,为实际工程中的智能控制算法提供了实用的设计思路。
关键词:变风量空调系统、多变量解耦控制、神经网络解耦、自适应PID控制、CARE算法。通过这篇论文,作者为解决变风量空调系统控制难题提供了创新的解决方案,对于提升空调系统的效率和稳定性具有重要的理论和实践意义。
2020-02-05 上传
2022-08-03 上传
2021-05-10 上传
2021-09-27 上传
2024-03-14 上传
2021-09-27 上传
2021-09-11 上传
zbcdxj
- 粉丝: 1
- 资源: 4
最新资源
- C语言数组操作:高度检查器编程实践
- 基于Swift开发的嘉定单车LBS iOS应用项目解析
- 钗头凤声乐表演的二度创作分析报告
- 分布式数据库特训营全套教程资料
- JavaScript开发者Robert Bindar的博客平台
- MATLAB投影寻踪代码教程及文件解压缩指南
- HTML5拖放实现的RPSLS游戏教程
- HT://Dig引擎接口,Ampoliros开源模块应用
- 全面探测服务器性能与PHP环境的iprober PHP探针v0.024
- 新版提醒应用v2:基于MongoDB的数据存储
- 《我的世界》东方大陆1.12.2材质包深度体验
- Hypercore Promisifier: JavaScript中的回调转换为Promise包装器
- 探索开源项目Artifice:Slyme脚本与技巧游戏
- Matlab机器人学习代码解析与笔记分享
- 查尔默斯大学计算物理作业HP2解析
- GitHub问题管理新工具:GIRA-crx插件介绍