Clementine中序列模式挖掘:关联规则探索
需积分: 50 85 浏览量
更新于2024-08-20
收藏 14.77MB PPT 举报
本资源主要介绍了如何在数据挖掘软件Clementine中进行序列模式挖掘,以分析客户浏览网页的历史记录数据,从而揭示网民浏览网页行为的规律。数据包含三个关键字段:CustomerGuid(网民编号)、URLcategory(网页类型)和SequenceID(浏览顺序)。通过关联规则挖掘,可以发现不同网页浏览行为之间的关联性。
关联规则是数据挖掘中的一个重要概念,它用于发现数据集中不同变量之间的关系。关联规则挖掘通常涉及以下几个核心概念:
1. **关联规则概述**:关联规则是描述数据集中两个或多个变量之间存在规律性的知识。例如,购物篮分析中发现购买啤酒的顾客往往也会购买尿布。
2. **项与项集**:每个样本被视为一个“事务”,事务由多个“项”组成,如商品。项集是由k个项构成的集合,如1-项集、2-项集和3-项集。
3. **关联规则表示**:规则通常表示为X → Y,其中X是前项,Y是后项。支持度s表示包含项集X和Y的事务占所有事务的比例,而置信度c是包含Y的事务中包含X的比例。
4. **频繁项集**:根据预设的最小支持度阈值min_sup和最小置信度阈值min_conf,支持度大于等于min_sup的项集被称为频繁项集。挖掘过程分为两步:首先找到所有频繁项集,然后基于这些项集生成满足最小置信度阈值的关联规则。
5. **关联规则挖掘算法**:常见的算法有Apriori算法和广度优先算法。Apriori算法是一种经典的挖掘频繁项集的算法,它通过迭代生成不同大小的候选集并计算支持度。
在Clementine中应用序列模式挖掘,首先要加载WebData.mdb文件,选择ClickPath表,然后设置挖掘参数,包括最小支持度和最小置信度。接着,运行序列模式挖掘算法,分析结果会展示不同URLcategory之间的关联规则。通过这些规则,可以洞察网民的浏览习惯,比如哪些网页类别经常一起被浏览,这有助于网站优化和个性化推荐。
关联规则挖掘是发现数据隐藏模式的有效工具,尤其在电子商务、市场营销等领域有广泛应用。在Clementine中进行序列模式挖掘,可以帮助我们更好地理解复杂的行为序列,如网络浏览行为,从而制定更有效的策略。
2015-08-15 上传
2010-03-07 上传
2010-01-13 上传
2010-03-07 上传
2010-01-13 上传
2010-01-13 上传
点击了解资源详情
点击了解资源详情
点击了解资源详情
欧学东
- 粉丝: 991
- 资源: 2万+
最新资源
- Python中快速友好的MessagePack序列化库msgspec
- 大学生社团管理系统设计与实现
- 基于Netbeans和JavaFX的宿舍管理系统开发与实践
- NodeJS打造Discord机器人:kazzcord功能全解析
- 小学教学与管理一体化:校务管理系统v***
- AppDeploy neXtGen:无需代理的Windows AD集成软件自动分发
- 基于SSM和JSP技术的网上商城系统开发
- 探索ANOIRA16的GitHub托管测试网站之路
- 语音性别识别:机器学习模型的精确度提升策略
- 利用MATLAB代码让古董486电脑焕发新生
- Erlang VM上的分布式生命游戏实现与Elixir设计
- 一键下载管理 - Go to Downloads-crx插件
- Java SSM框架开发的客户关系管理系统
- 使用SQL数据库和Django开发应用程序指南
- Spring Security实战指南:详细示例与应用
- Quarkus项目测试展示柜:Cucumber与FitNesse实践