混合布朗泊松分数模型在期权定价中的应用

0 下载量 131 浏览量 更新于2024-07-16 收藏 237KB PDF 举报
"混合布朗泊松分数模型在期权定价中的应用" 这篇论文的标题是"A Mixed Brownian-Poisson-fractional Model for option pricing",由刘倩和王晓天撰写,他们在南华理工大学数学系工作。文章主要探讨的是期权定价的一个新模型,该模型结合了标准布朗运动(Brownian motion)和泊松分数过程(Poisson fractional process),特别是当Hurst指数位于(1/2, 1)区间时的情况。Hurst指数通常用于衡量时间序列的长期依赖性或自相似性。 在金融工程领域,期权定价是关键问题之一,传统的Black-Scholes模型假设股票价格遵循无记忆的几何布朗运动。然而,现实市场的股票价格往往表现出厚尾、偏斜的分布特征,并且存在长期依赖性,即所谓的长期记忆效应。这些特性在标准的Black-Scholes模型中并未得到充分考虑。 作者们建立的混合模型旨在更准确地反映这些市场特质。他们利用Ito公式和随机积分理论,扩展了原有的定价框架。尽管股票回报分布呈现厚尾、偏斜,并且有比正态分布更宽的尾部,以及股票回报序列显示出长期依赖性,但他们的研究发现,在某些情况下,Black-Scholes公式仍然有效。这意味着,股票回报的偏斜分布和厚尾,以及长期依赖性,并不总是解释期权隐含波动率微笑现象(implied volatility smile)的根本因素。 关键词包括长期依赖性、泊松分数过程和期权定价。论文的介绍部分可能进一步讨论了现有模型的局限性,以及为何需要引入新的混合模型。这个模型可能为理解和预测金融市场提供了更丰富的视角,特别是在处理非高斯分布和具有长期记忆性的数据时。 这篇论文为理解期权定价的复杂性提供了一个新的工具,它强调了在特定条件下,股票市场的一些统计特性可能不是影响期权价格的关键因素。这个混合模型为金融市场分析和风险管理提供了新的理论支持。

Here are the detail information provided in PPTs:The option is an exotic partial barrier option written on an FX rate. The current value of underlying FX rate S0 = 1.5 (i.e. 1.5 units of domestic buys 1 unit of foreign). It matures in one year, i.e. T = 1. The option knocks out, if the FX rate:1 is greater than an upper level U in the period between between 1 month’s time and 6 month’s time; or,2 is less than a lower level L in the period between 8th month and 11th month; or,3 lies outside the interval [1.3, 1.8] in the final month up to the end of year.If it has not been knocked out at the end of year, the owner has the option to buy 1 unit of foreign for X units of domestic, say X = 1.4, then, the payoff is max{0, ST − X }.We assume that, FX rate follows a geometric Brownian motion dSt = μSt dt + σSt dWt , (20) where under risk-neutrality μ = r − rf = 0.03 and σ = 0.12.To simulate path, we divide the time period [0, T ] into N small intervals of length ∆t = T /N, and discretize the SDE above by Euler approximation St +∆t − St = μSt ∆t + σSt √∆tZt , Zt ∼ N (0, 1). (21) The algorithm for pricing this barrier option by Monte Carlo simulation is as described as follows:1 Initialize S0;2 Take Si∆t as known, calculate S(i+1)∆t using equation the discretized SDE as above;3 If Si+1 hits any barrier, then set payoff to be 0 and stop iteration, otherwise, set payoff at time T to max{0, ST − X };4 Repeat the above steps for M times and get M payoffs;5 Calculate the average of M payoffs and discount at rate μ;6 Calculate the standard deviation of M payoffs.

133 浏览量