CCL:一种融合控制与计算的多机器人任务模型

需积分: 10 1 下载量 101 浏览量 更新于2024-09-12 收藏 153KB PDF 举报
本文探讨了"多机器人控制与通信任务的正式模型",通过一种名为Computation and Control Language (CCL)的严谨命令语言来描述和设计复杂的系统。CCL是一种融合了控制和计算的编程语言,其程序由一组受保护的命令构成,这些命令可以更新连续或离散变量,并且能够用一种简单的时序逻辑进行推理。作者以一个具体的机器人"RoboFlag Drill"为例,这是一个自稳定通信协议的机器人抓旗系统,其行为取决于机器人在特定环境中的行动策略。 在这个案例中,CCL被用来编码一个机器人团队如何协作捕捉旗帜,同时确保通信的有效性和系统的稳定性。通信协议的设计目标是让机器人之间在复杂环境中高效地协调行动,这涉及到实时决策和适应性,以确保任务的成功执行。自稳定意味着即使在初始状态不稳定的情况下,系统也能通过自身的规则和机制恢复到预期的工作状态。 研究者们关注的是如何设计出大规模的分布式系统,如多个车辆组成的车队或者自动化工厂,这些系统中的每个组件既要执行计算任务又要进行自主控制。通过CCL这样的工具,他们希望能够实现系统的整体协调,减少中央控制的依赖,提高系统的可靠性和效率。 论文的结尾部分简要概述了作者们对CCL的正式语义的初始实现,将其作为一种实用的编程语言。这种实现允许开发者不仅编写控制策略,还能验证和理解其在实际应用中的行为和性能。这篇论文展示了CCL在多机器人系统设计中的潜力,以及它在理论和实践层面上对于提升复杂任务控制能力的重要性。

For macroscopically anisotropic media in which the variations in the phase stiffness tensor are small, formal solutions to the boundary-value problem have been developed in the form of perturbation series (Dederichs and Zeller, 1973; Gubernatis and Krumhansl, 1975 ; Willis, 1981). Due to the nature of the integral operator, one must contend with conditionally convergent integrals. One approach to this problem is to carry out a “renormalization” procedure which amounts to identifying physically what the conditionally convergent terms ought to contribute and replacing them by convergent terms that make this contribution (McCoy, 1979). For the special case of macroscopically isotropic media, the first few terms of this perturbation expansion have been explicitly given in terms of certain statistical correlation functions for both three-dimensional media (Beran and Molyneux, 1966 ; Milton and Phan-Thien, 1982) and two-dimensional media (Silnutzer, 1972 ; Milton, 1982). A drawback of all of these classical perturbation expansions is that they are only valid for media in which the moduli of the phases are nearly the same, albeit applicable for arbitrary volume fractions. In this paper we develop new, exact perturbation expansions for the effective stiffness tensor of macroscopically anisotropic composite media consisting of two isotropic phases by introducing an integral equation for the so-called “cavity” strain field. The expansions are not formal but rather the nth-order tensor coefficients are given explicitly in terms of integrals over products of certain tensor fields and a determinant involving n-point statistical correlation functions that render the integrals absolutely convergent in the infinite-volume limit. Thus, no renormalization analysis is required because the procedure used to solve the integral equation systematically leads to absolutely convergent integrals. Another useful feature of the expansions is that they converge rapidly for a class of dispersions for all volume fractions, even when the phase moduli differ significantly.

2023-06-02 上传