分布式强化学习中的循环经验回放缓冲区

需积分: 9 2 下载量 35 浏览量 更新于2024-07-18 收藏 6.97MB PDF 举报
"RECURRENT EXPERIENCE REPLAY IN DISTRIBUTED REINFORCEMENT LEARNING" 这篇论文主要探讨了在分布式强化学习中使用循环经验回放(Recurrent Experience Replay, RER)来训练基于循环神经网络(RNN)的强化学习(RL)代理。作者针对参数滞后导致的表示漂移和循环状态的陈旧性问题进行了研究,并提出了改进的训练策略。通过使用单一的网络架构和固定的超参数设置,他们开发出了名为Recurrent Replay Distributed DQN(R2D2)的代理,该代理在Atari-57游戏上实现了三倍于之前最佳成绩的表现,并在DMLab-30上超越了当前的最佳水平。R2D2是首个在52款Atari游戏中超过人类水平的智能体。 1. 强化学习与循环神经网络 强化学习是一种机器学习方法,通过与环境的交互来学习最优策略。近期,RL在解决复杂问题上取得了一系列成就,如在Atari 2600游戏上达到人类级别,战胜围棋世界冠军,以及在多人在线对战游戏DOTA中表现出竞争力。 2. 参数滞后与表示漂移 在分布式强化学习中,由于网络更新的异步性,可能导致参数滞后问题,即某些部分的网络可能没有及时更新到最新状态。这会导致表示漂移,即模型对环境的理解逐渐偏离实际情况。 3. 循环状态的陈旧性 循环神经网络在处理序列数据时,其内部状态会随时间演变。然而,在分布式设置中,这些状态可能无法实时更新,导致循环状态的陈旧性,影响学习效率和性能。 4. Recurrent Replay Distributed DQN (R2D2) R2D2是解决上述问题的一种方法,它结合了循环神经网络和经验回放的技术。经验回放用于打破数据序列的相关性,而循环神经网络则能捕获长期依赖关系。R2D2通过优化策略,减少了参数滞后和循环状态陈旧性的影响,从而提高了学习效率和性能。 5. 实验结果 在Atari-57和DMLab-30的广泛实验中,R2D2展现出了卓越的性能,不仅超过了先前的算法,还在52款Atari游戏中达到了超过人类玩家的水平。 6. 结论与未来工作 R2D2的成功表明,循环经验回放在分布式强化学习中具有巨大的潜力。未来的研究可能涉及更深入地理解如何优化回放机制,以及如何将这种方法扩展到其他复杂的环境和任务中。 这篇论文对于强化学习社区来说是一项重要贡献,因为它提供了一种有效的方法来应对分布式学习中的挑战,特别是在使用RNN时。R2D2的成功可能启发更多的研究,以改进RL算法并推动其在现实世界应用中的发展。
2018-06-12 上传
Computers and computer networks are one of the most incredible inventions of the 20th century, having an ever-expanding role in our daily lives by enabling complex human activities in areas such as entertainment, education, and commerce. One of the most challenging problems in computer science for the 21st century is to improve the design of distributed systems where computing devices have to work together as a team to achieve common goals. In this book, I have tried to gently introduce the general reader to some of the most fundamental issues and classical results of computer science underlying the design of algorithms for distributed systems, so that the reader can get a feel of the nature of this exciting and fascinating field called distributed computing. The book will appeal to the educated layperson and requires no computer-related background. I strongly suspect that also most computer-knowledgeable readers will be able to learn something new. Gadi Taubenfeld is a professor and past dean of the School of Computer Science at the Interdisciplinary Center in Herzliya, Israel. He is an established authority in the area of concurrent and distributed computing and has published widely in leading journals and conferences. He authored the book Synchronization Algorithms and Concurrent Programming, published by Pearson Education. His primary research interests are in concurrent and distributed computing. Gadi was the head of the computer science division at Israel's Open University; member of technical staff at AT&T Bell Laboratories; consultant to AT&T Labs–Research; and a research scientist and lecturer at Yale University. Gadi served as the program committee chair of PODC 2013 and DISC 2008 and holds a Ph.D. in Computer Science from the Technion–Israel Institute of Technology.