风廓线雷达数据分析与图形绘制技术

版权申诉
5星 · 超过95%的资源 2 下载量 68 浏览量 更新于2024-10-31 3 收藏 1.91MB RAR 举报
资源摘要信息: "ReadOBS.rar" 压缩包文件中包含了一系列与风廓线雷达数据处理相关的文件和工具。这些文件主要涉及雷达技术中风廓线雷达的数据读取和可视化技术。具体的知识点涵盖了以下几方面: 1. 风廓线雷达技术基础 风廓线雷达(Wind Profiler Radar)是一种遥感技术,用于探测大气中的风速和风向随高度变化的情况。该技术可以提供高空风场的三维结构数据,对于气象研究、环境监测、航空安全等领域至关重要。风廓线雷达通常发射无线电波,并接收大气中散射回来的信号,通过分析这些信号,科学家可以获得风速、风向以及大气结构等信息。 2. 雷达数据参数解读 雷达数据包含了多个重要的参数,其中方位角(Azimuth)、反射率(Reflectivity)、速度(Velocity)、高度(Altitude)是最为基础的数据要素。方位角表示雷达波发射方向与基准方向的夹角,反射率指的是大气中粒子对雷达波的散射能力,速度通常指的是风向与雷达波传播方向的相对速度,而高度则是雷达波探测到的气层所在的高度。通过这些参数的组合和分析,可以获得风廓线的具体信息。 3. 风廓线雷达数据读取 读取风廓线雷达数据涉及到对雷达原始数据文件的解析。这些数据文件可能以特定的格式存储,如二进制格式、HDF(Hierarchical Data Format)等。需要使用专门的读取工具或编程语言中的库函数,如Matlab、Python等,来解析数据文件,获取上述提到的雷达参数。 4. 雷达数据可视化 根据雷达数据进行画图是理解风廓线信息的重要手段。数据可视化可以采用图表、曲线、图像等多种形式。在风廓线雷达的上下文中,常用的可视化手段包括绘制风廓线图,其中横轴代表高度,纵轴代表风速和风向。通过不同颜色和符号,可以直观地展示风速和风向在不同高度上的变化。 5. 雷达数据处理技术 在处理雷达数据时,可能需要采用一系列的信号处理技术,例如滤波去噪、数据分析算法等,以提高数据的准确性和可靠性。数据处理的目标是优化数据的可用性和准确性,从而使得从雷达数据中得到的风廓线信息更加可靠。 6. 压缩包文件及其应用 "ReadOBS.rar" 压缩包文件可能包含了上述功能的软件工具、脚本或程序库,供用户下载使用。这些工具可能是专门为风廓线雷达数据处理而设计的,也可能包含了一些辅助文档或说明,如使用指南、API文档、示例代码等。 综上所述,该压缩包文件中的内容旨在帮助用户快速有效地读取和分析风廓线雷达数据,并通过画图等方式将分析结果可视化展示出来,对于研究和应用风廓线雷达技术具有重要价值。

import jittor as jt import jrender as jr jt.flags.use_cuda = 1 # 开启GPU加速 import os import tqdm import numpy as np import imageio import argparse # 获取当前文件所在目录路径和数据目录路径 current_dir = os.path.dirname(os.path.realpath(__file__)) data_dir = os.path.join(current_dir, 'data') def main(): # 创建命令行参数解析器 parser = argparse.ArgumentParser() parser.add_argument('-i', '--filename-input', type=str, default=os.path.join(data_dir, 'obj/spot/spot_triangulated.obj')) parser.add_argument('-o', '--output-dir', type=str, default=os.path.join(data_dir, 'results/output_render')) args = parser.parse_args() # other settings camera_distance = 2.732 elevation = 30 azimuth = 0 # load from Wavefront .obj file mesh = jr.Mesh.from_obj(args.filename_input, load_texture=True, texture_res=5, texture_type='surface', dr_type='softras') # create renderer with SoftRas renderer = jr.Renderer(dr_type='softras') os.makedirs(args.output_dir, exist_ok=True) # draw object from different view loop = tqdm.tqdm(list(range(0, 360, 4))) writer = imageio.get_writer(os.path.join(args.output_dir, 'rotation.gif'), mode='I') imgs = [] from PIL import Image for num, azimuth in enumerate(loop): # rest mesh to initial state mesh.reset_() loop.set_description('Drawing rotation') renderer.transform.set_eyes_from_angles(camera_distance, elevation, azimuth) rgb = renderer.render_mesh(mesh, mode='rgb') image = rgb.numpy()[0].transpose((1, 2, 0)) writer.append_data((255*image).astype(np.uint8)) writer.close() # draw object from different sigma and gamma loop = tqdm.tqdm(list(np.arange(-4, -2, 0.2))) renderer.transform.set_eyes_from_angles(camera_distance, elevation, 45) writer = imageio.get_writer(os.path.join(args.output_dir, 'bluring.gif'), mode='I') for num, gamma_pow in enumerate(loop): # rest mesh to initial state mesh.reset_() renderer.set_gamma(10**gamma_pow) renderer.set_sigma(10**(gamma_pow - 1)) loop.set_description('Drawing blurring') images = renderer.render_mesh(mesh, mode='rgb') image = images.numpy()[0].transpose((1, 2, 0)) # [image_size, image_size, RGB] writer.append_data((255*image).astype(np.uint8)) writer.close() # save to textured obj mesh.reset_() mesh.save_obj(os.path.join(args.output_dir, 'saved_spot.obj')) if __name__ == '__main__': main()在每行代码后添加注释

2023-06-07 上传

解释这段代码import jittor as jt import jrender as jr jt.flags.use_cuda = 1 import os import tqdm import numpy as np import imageio import argparse current_dir = os.path.dirname(os.path.realpath(__file__)) data_dir = os.path.join(current_dir, 'data') def main(): parser = argparse.ArgumentParser() parser.add_argument('-i', '--filename-input', type=str, default=os.path.join(data_dir, 'obj/spot/spot_triangulated.obj')) parser.add_argument('-o', '--output-dir', type=str, default=os.path.join(data_dir, 'results/output_render')) args = parser.parse_args() # other settings camera_distance = 2.732 elevation = 30 azimuth = 0 # load from Wavefront .obj file mesh = jr.Mesh.from_obj(args.filename_input, load_texture=True, texture_res=5, texture_type='surface', dr_type='softras') # create renderer with SoftRas renderer = jr.Renderer(dr_type='softras') os.makedirs(args.output_dir, exist_ok=True) # draw object from different view loop = tqdm.tqdm(list(range(0, 360, 4))) writer = imageio.get_writer(os.path.join(args.output_dir, 'rotation.gif'), mode='I') imgs = [] from PIL import Image for num, azimuth in enumerate(loop): # rest mesh to initial state mesh.reset_() loop.set_description('Drawing rotation') renderer.transform.set_eyes_from_angles(camera_distance, elevation, azimuth) rgb = renderer.render_mesh(mesh, mode='rgb') image = rgb.numpy()[0].transpose((1, 2, 0)) writer.append_data((255*image).astype(np.uint8)) writer.close() # draw object from different sigma and gamma loop = tqdm.tqdm(list(np.arange(-4, -2, 0.2))) renderer.transform.set_eyes_from_angles(camera_distance, elevation, 45) writer = imageio.get_writer(os.path.join(args.output_dir, 'bluring.gif'), mode='I') for num, gamma_pow in enumerate(loop): # rest mesh to initial state mesh.reset_() renderer.set_gamma(10**gamma_pow) renderer.set_sigma(10**(gamma_pow - 1)) loop.set_description('Drawing blurring') images = renderer.render_mesh(mesh, mode='rgb') image = images.numpy()[0].transpose((1, 2, 0)) # [image_size, image_size, RGB] writer.append_data((255*image).astype(np.uint8)) writer.close() # save to textured obj mesh.reset_() mesh.save_obj(os.path.join(args.output_dir, 'saved_spot.obj')) if __name__ == '__main__': main()

2023-06-06 上传

class SpiralIterator: def init(self, source, x=810, y=500, length=None): self.source = source self.row = np.shape(self.source)[0]#第一个元素是行数 self.col = np.shape(self.source)[1]#第二个元素是列数 if length: self.length = min(length, np.size(self.source)) else: self.length = np.size(self.source) if x: self.x = x else: self.x = self.row // 2 if y: self.y = y else: self.y = self.col // 2 self.i = self.x self.j = self.y self.iteSize = 0 geo_transform = dsm_data.GetGeoTransform() self.x_origin = geo_transform[0] self.y_origin = geo_transform[3] self.pixel_width = geo_transform[1] self.pixel_height = geo_transform[5] def hasNext(self): return self.iteSize < self.length # 不能取更多值了 def get(self): if self.hasNext(): # 还能再取一个值 # 先记录当前坐标的值 —— 准备返回 i = self.i j = self.j val = self.source[i][j] # 计算下一个值的坐标 relI = self.i - self.x # 相对坐标 relJ = self.j - self.y # 相对坐标 if relJ > 0 and abs(relI) < relJ: self.i -= 1 # 上 elif relI < 0 and relJ > relI: self.j -= 1 # 左 elif relJ < 0 and abs(relJ) > relI: self.i += 1 # 下 elif relI >= 0 and relI >= relJ: self.j += 1 # 右 #判断索引是否在矩阵内 x = self.x_origin + (j + 0.5) * self.pixel_width y = self.y_origin + (i + 0.5) * self.pixel_height z = val self.iteSize += 1 return x, y, z dsm_path = 'C:\sanwei\jianmo\Productions\Production_2\Production_2_DSM_part_2_2.tif' dsm_data = gdal.Open(dsm_path) dsm_array = dsm_data.ReadAsArray() spiral_iterator = SpiralIterator(dsm_array,x=810,y=500) while spiral_iterator.hasNext(): x, y, z = spiral_iterator.get() print(f'Value at ({x},{y}):{z}')这段代码怎么改可以利用共线方程将地面点坐标反算其在原始航片的像素坐标

2023-06-02 上传

import numpy as np import pandas as pd import time import matplotlib.pyplot as plt # 指定文件名 inputFilename = './file.dpmrpt' outputFilename = 'out' # 分组数 N = 101 sm = 1.3e-4 # 计时开始 tic = time.time() # 规范化数据 print('规范化数据中...') content = '' with open(inputFilename) as f: content = f.read() content = content.replace( '(', '' ) content = content.replace( ')', '' ) content = content.replace( 'injection-0:', '' ) # 输出文件名 filename = './file.dpmrpt.csv' print('规范化写出到{}!'.format( filename ) ) with open(filename,'w') as csv: csv.write(content) print('规范化完成!') # 加载规范化后的数据 print('加载规范化后的数据...') data = np.loadtxt(filename, skiprows=17)#读取文件并跳过前两行数据 x, y, z, u, v, w, ve = data[:,1], data[:,2], data[:,3], data[:,4], data[:,5], data[:,6], data[:,7] bin = np.linspace(x.min(), x.max(), N)#创建等差数列,将X分成N个组 out = np.zeros((N-1,7))#out为N-1行,4列矩阵 z_sym = z.copy() z_sym = -z_sym z = np.concatenate((z,z_sym))/0.002 x = np.concatenate((x,x))/0.002 y = np.concatenate((y,y))/0.002 u = np.concatenate((u,u)) print('横截面平均完成。') from mpl_toolkits.mplot3d import Axes3D fig = plt.figure(figsize=(12,10)) #ax1 = plt.axes(projection='3d') s1 = 1e-2 c1 = 40.0*u ax = fig.add_subplot(111,projection='3d') #这种方法可以画多个子图 ax.scatter3D(x, z, y, s = s1, c = c1, cmap='plasma',marker = ',') ax.set_xlabel('x/D', fontname='Times New Roman') ax.set_ylabel('z/D', fontname='Times New Roman') ax.set_zlabel('y/D', fontname='Times New Roman') ax.set_xlim([-15.0,30.0]) ax.set_ylim([-10.0,10.0]) ax.set_zlim([0.0,25.0]) ax.set_box_aspect(aspect=(45,20,25)) ax.tick_params(axis='x', which='major', pad=8, labelsize=8) ax.tick_params(axis='y', which='major', pad=8, labelsize=8) ax.tick_params(axis='z', which='major', pad=8, labelsize=8) plt.show() # 计时结束 toc = time.time() print('Time cost {} s'.format(toc-tic )) print('结束'),如何调整输出的三维图到合适的视角

2023-06-12 上传