LAGE-1 DNA疫苗对小鼠乳腺癌的抗肿瘤效果及免疫应答研究

需积分: 5 0 下载量 168 浏览量 更新于2024-08-14 收藏 265KB PDF 举报
"这篇研究论文发表于2011年11月的四川大学学报(自然科学版),探讨了LAGE-1DNA肿瘤疫苗在抗肿瘤治疗中的效果。研究人员通过LAGE-1转染EMT6细胞构建了小鼠乳腺癌模型,并将BalB/c小鼠分为4组,对比了实验组接种的pcDNA3.1/LAGE-1疫苗与对照组接种的pcDNA3.1。在末次免疫后,小鼠被植入不同类型的肿瘤细胞,以评估疫苗引发的免疫反应和抗肿瘤效果。实验结果显示,LAGE-1DNA疫苗能够诱导体内产生有效的特异性肿瘤免疫应答,表明这种疫苗具有潜力且操作简便。" 在本研究中,LAGE-1是一种重要的分子,它与肿瘤发生有关。LAGE-1DNA肿瘤疫苗是通过将LAGE-1基因插入到pcDNA3.1表达载体中,使其在宿主细胞内表达,进而引发免疫反应。小鼠乳腺癌模型的建立是通过将LAGE-1转染到EMT6细胞中,这种细胞通常用于肿瘤研究,因为它可以快速形成肿瘤。 实验设计采用了随机分组,确保了结果的可比性。BalB/c小鼠接种疫苗后,研究人员观察了接种疫苗的效应,包括成瘤时间和肿瘤大小的变化,这些是评估抗肿瘤效果的关键指标。此外,通过检测小鼠脾细胞的CTL(细胞毒性T淋巴细胞)杀伤活性,研究人员能够评估免疫系统对肿瘤细胞的攻击力,这是评价疫苗诱导免疫应答的重要手段。 结果显示,LAGE-1DNA疫苗能够刺激机体产生针对肿瘤的特异性免疫反应,这可能是因为疫苗激发了CTLs的增殖和活化,从而提高了对肿瘤细胞的杀伤能力。这一发现对于肿瘤免疫疗法领域具有重要意义,因为它提供了一种可能的、非侵入性的治疗策略,且疫苗的制备和应用相对简单。 这项研究揭示了LAGE-1DNA疫苗在抗肿瘤治疗中的潜在价值,为后续的临床试验和可能的癌症治疗方法开发提供了理论依据。然而,尽管实验显示出积极的结果,但还需要进一步的研究来验证其在人体内的安全性和有效性。

import numpy as np # 定义参数 n_lags = 31 # 滞后阶数 n_vars = 6 # 变量数量 alpha = 0.05 # 置信水平 # 准备数据 data = np.array([820.95715,819.17877,801.60077,30,26164.9,11351.8], [265.5425,259.05476,257.48619,11.4,12525,4296.5], [696.9681,685.54114,663.32014,47.5,23790.484,8344.8], [4556.1091,440.58995,433.21995,24.6,12931.388,5575.4], [360.08693,353.75386,351.59186,26.9,11944.322,4523], [938.55919,922.25468,894.26468,35.3,27177.893,8287.4], [490.47837,477.35237,385.17474,24.5,14172.1,6650.4], [553.15463,452.35042,425.92277,32.9,16490.17,7795], [740.35759,721.68259,721.68259,15.5,26117.755,7511.7], [1581.99576,1579.50357,1571.23257,65.4,59386.7,15347.2], [1360.91636,1360.20825,1358.11425,66.4,57160.533,8080], [564.06146,560.91611,559.08711,35.2,22361.86,6165.4], [732.17283,727.25063,725.93863,29.7,22177.389,4393.2], [424.12777,424.10579,411.19979,21.6,14691.359,4695.6], [1439.38133,1437.85585,1436.67585,77.3,50123.672,15479], [961.92496,935.21589,931.28189,45.7,28073.9,11273.3], [881.92808,868.65804,832.44504,46.1,27409.15,11224.4], [713.32299,710.75882,707.42682,35.8,24887.111,5164.2], [2657.28891,2599.20299,2515.67859,92,94207.179,19066.4], [420.95033,418.22931,416.80631,25.6,13309.9,7020], [193.92636,193.84936,193.83836,10.9,6133,6139.5], [499.81565,493.73678,485.2468,20.9,13555.897,3412], [951.93942,939.58126,930.049,45.6,27245.608,7752.5], [309.88498,297.05055,295.69055,22.6,11929.038,3903.2], [411.87141,406.63838,389.29638,27.8,12197.085,3834.1], [45.53226,39.24379,55.34631667,7.5,1872.333333,564.3], [532.67282,524.78031,520.89851,24,18041.642,3902], [269.00374,266.96222,211.14422,20.3,7163.069,3515.4], [91.95276,88.77094,85.74583,7.7,1962.8,645.8], [120.60234,116.39872,113.85872,9.8,4227.003,1706.2], [362.98862,350.36495,318.70232,23.7,11615.383,5752.1]) # 计算VAR模型的系数 X = np.zeros((data.shape[0] - n_lags, n_lags * n_vars)) y = np.zeros((data.shape[0] - n_lags, n_vars)) for i in range(n_lags, data.shape[0]): X[i-n_lags, :] = data[i-n_lags:i, :].reshape(1, -1) y[i-n_lags, :] = data[i, :] coefficients = np.linalg.inv(X.T @ X) @ X.T @ y # 计算残差 residuals = y - X @ coefficients # 计算PVAR模型的紧贴矩阵 T = residuals[n_lags:, :] @ residuals[:-n_lags, :].T / (data.shape[0] - n_lags) # 计算PVAR模型的系数 u, s, vh = np.linalg.svd(T) S_inv = np.diag(np.sqrt(s[:n_vars])) @ np.linalg.inv(vh[:n_vars, :]) A = S_inv @ u[:, :n_vars].T @ residuals[n_lags:, :].T # 计算置信区间 t_value = np.abs(np.tinv(alpha/2, data.shape[0]-n_lags-n_vars)) se = np.sqrt((1/(data.shape[0]-n_lags-n_vars)) * (np.sum(residuals[n_lags:, :]**2) / (data.shape[0]-n_lags-n_vars-1))) conf_int = t_value * se print("PVAR模型的系数:\n", A) print("置信区间:[{:.4f}, {:.4f}]".format(A.mean() - conf_int, A.mean() + conf_int))这段代码有什么错误

2023-05-22 上传
2023-06-12 上传