PSO-ELM辅助诊断:提高孤立性肺结节识别准确率
需积分: 13 128 浏览量
更新于2024-08-28
1
收藏 1.72MB PDF 举报
"基于POS-ELM的孤立性肺结节诊断方法研究"
本文主要探讨了在肺结节诊断领域,如何通过改进机器学习方法来提高孤立性肺结节的识别准确率。传统的机器学习算法在诊断性能上存在不稳定性,针对这一问题,研究者提出了一个基于粒子群优化(PSO)参数的极限学习机(ELM)辅助诊断系统。该系统旨在解决孤立性肺结节的早期诊断,以提高肺癌患者的生存率。
粒子群优化(PSO)是一种生物启发式算法,它被用来寻找ELM的最佳初始权重ω和偏置b。PSO的优势在于其全局搜索能力,能够在多维空间中快速找到最优解。在本文的方法中,PSO首先被用来优化ELM的参数设置,以提高模型的训练效果。
极限学习机(ELM)是一种快速、高效的单隐藏层前馈神经网络。通常,ELM的权重和偏置是随机初始化的,但通过PSO的优化,可以更精确地确定这些参数,从而提高ELM的分类性能。在训练阶段,使用优化后的ω和b对ELM进行训练,使其能够更好地学习和理解肺结节的特征。
在特征提取方面,文章采用了稀疏自编码(Sparse Autoencoder)。这是一种深度学习技术,能够从原始数据中自动学习到低维度的、有意义的特征表示。通过稀疏自编码,肺结节的CT图像数据被转化为更具诊断价值的特征向量,这些特征向量随后被输入到PSO-ELM分类器中进行识别。
实验结果表明,PSO-ELM方法相比于传统的机器学习算法(如SVM、ANN、AdaBoost和朴素贝叶斯等)在孤立性肺结节的诊断上表现出更高的识别准确率和更稳定的分类性能。这证明了结合PSO优化的ELM在肺结节诊断中的优越性,并为计算机辅助诊断提供了一种有效工具。
总结来说,这项研究创新性地将粒子群优化与极限学习机相结合,利用稀疏自编码提取特征,构建了一个强大的肺结节诊断系统。这种方法不仅提高了识别精度,还增强了系统的稳定性,对于临床肺癌早期诊断具有重要价值。未来的研究可以进一步探索如何优化这一框架,以适应更多种类的医疗影像分析任务。
2021-09-27 上传
2021-10-04 上传
2019-10-14 上传
2023-06-09 上传
2023-07-22 上传
2023-05-23 上传
2023-09-24 上传
2023-06-13 上传
2023-06-09 上传
weixin_38606019
- 粉丝: 4
- 资源: 935
最新资源
- JHU荣誉单变量微积分课程教案介绍
- Naruto爱好者必备CLI测试应用
- Android应用显示Ignaz-Taschner-Gymnasium取消课程概览
- ASP学生信息档案管理系统毕业设计及完整源码
- Java商城源码解析:酒店管理系统快速开发指南
- 构建可解析文本框:.NET 3.5中实现文本解析与验证
- Java语言打造任天堂红白机模拟器—nes4j解析
- 基于Hadoop和Hive的网络流量分析工具介绍
- Unity实现帝国象棋:从游戏到复刻
- WordPress文档嵌入插件:无需浏览器插件即可上传和显示文档
- Android开源项目精选:优秀项目篇
- 黑色设计商务酷站模板 - 网站构建新选择
- Rollup插件去除JS文件横幅:横扫许可证头
- AngularDart中Hammock服务的使用与REST API集成
- 开源AVR编程器:高效、低成本的微控制器编程解决方案
- Anya Keller 图片组合的开发部署记录