18
LMK04208
ZHCSFH1 –SEPTEMBER 2016
www.ti.com.cn
Copyright © 2016, Texas Instruments Incorporated
8 Detailed Description
8.1 Overview
In default mode of operation, dual PLL mode with internal VCO, the Phase Frequency Detector in PLL1
compares the active CLKinX reference divided by CLKinX_PreR_DIV and PLL1 R divider with the external
VCXO or crystal attached to the PLL2 OSCin port divided by PLL1 N divider. The external loop filter for PLL1
should be narrow to provide an ultra clean reference clock from the external VCXO or crystal to the
OSCin/OSCin* pins for PLL2.
The Phase Frequency Detector in PLL2 compares the external VCXO or crystal to the internal VCO after the
reference and feedback dividers. The VCXO or crystal on the OSCin input is divided by PLL2 R divider. The
feedback from the internal VCO is divided by the PLL2 Prescaler, the PLL2 N divider, and optionally the VCO
divider.
The bandwidth of the external loop filter for PLL2 should be designed to be wide enough to take advantage of
the low in-band phase noise of PLL2 and the low high offset phase noise of the internal VCO. The VCO output is
also placed on the distribution path for the Clock Distribution section. The clock distribution consists of 6 outputs.
Each clock output allows the user to select a divide value, a digital delay value, and an analog delay. The 6 clock
outputs drive programmable output buffers. Two clock outputs allow their input signal to be from the OSCin port
directly.
When a 0-delay mode is used, a clock output will be passed through the feedback mux to the PLL1 N Divider for
synchronization and 0-delay.
When an external VCO mode is used, the Fin port will be used to input an external VCO signal. PLL2 Phase
comparison will now be with this signal divided by the PLL2 N divider and N2 pre-scaler. The VCO divider may
not be used. One less clock input is available when using an external VCO mode.
When a single PLL mode is used, PLL1 is powered down. OSCin is used as a reference to PLL2.
8.1.1 System Architecture
The dual loop PLL architecture of the LMK04208 provides the lowest jitter performance over the widest range of
output frequencies and phase noise integration bandwidths. The first stage PLL (PLL1) is driven by an external
reference clock and uses an external VCXO or tunable crystal to provide a frequency accurate, low phase noise
reference clock for the second stage frequency multiplication PLL (PLL2). PLL1 typically uses a narrow loop
bandwidth (10 Hz to 200 Hz) to retain the frequency accuracy of the reference clock input signal while at the
same time suppressing the higher offset frequency phase noise that the reference clock may have accumulated
along its path or from other circuits. This cleaned reference clock provides the reference input to PLL2.
The low phase noise reference provided to PLL2 allows PLL2 to operate with a wide loop bandwidth (50 kHz to
200 kHz). The loop bandwidth for PLL2 is chosen to take advantage of the superior high offset frequency phase
noise profile of the internal VCO and the good low offset frequency phase noise of the reference VCXO or
tunable crystal.
Ultra low jitter is achieved by allowing the external VCXO or crystal’s phase noise to dominate the final output
phase noise at low offset frequencies and the internal (or external) VCO’s phase noise to dominate the final
output phase noise at high offset frequencies. This results in best overall phase noise and jitter performance.
The LMK04208 allows subsets of the device to be used to increase the flexibility of device. These different
modes are selected using MODE: Device Mode. For instance:
• Dual Loop Mode - Typical use case of LMK04208. CLKinX used as reference input to PLL1, OSCin port is
connected to VCXO or tunable crystal.
• Single Loop Mode - Powers down PLL1. OSCin port is used as reference input.
• Clock Distribution Mode - Allows input of CLKin1 to be distributed to output with division, digital delay, and
analog delay.
See Device Functional Modes for more information on these modes.