Python进行社交网络分析入门

4星 · 超过85%的资源 需积分: 43 115 下载量 177 浏览量 更新于2024-07-20 4 收藏 1.47MB PDF 举报
"使用Python进行社交网络分析" 在现代社会中,数据无处不在,尤其是在社交网络领域。"Network Analysis with Python" 是一个专注于利用Python语言进行网络分析的主题,特别是社交网络分析。网络分析是一个强大的工具,它可以帮助我们理解复杂的关系结构、模式和趋势,而Python的易读性和灵活性使其成为进行此类分析的理想选择。 NetworkX是Python中的一个核心库,专门用于创建、操作和研究复杂网络的结构、动态和功能。这个库由Salvatore Scellato在30th SunBelt Conference上的教程中介绍,并且基于Aric Hagberg和Drew Conway的工作,提供了对社交网络进行黑客式探索的基础。 讲座的概览涵盖了以下几个关键部分: 1. **Introduction to NetworkX**: 这部分介绍了NetworkX库的基本概念,强调了其在网络分析中的应用,特别是在处理社交网络数据时的强大功能。随着社交媒体的普及,如网页、移动电话和各种社交平台,产生了大量的网络数据,NetworkX提供了一种有效的方法来处理和分析这些数据。 2. **Getting started with Python and NetworkX**: 学习Python和NetworkX的入门步骤是至关重要的。Python是一种解释型的高级编程语言,注重代码的可读性,其设计哲学鼓励"有且只有一种明显的方式"来解决问题。对于新手来说,Python的简洁语法和丰富的库生态系统使得快速上手成为可能。 3. **Basic network analysis**: 这部分可能会涵盖网络的基本属性,如节点(nodes)和边(edges),度中心性(degree centrality)、接近中心性(closeness centrality)和介数中心性(betweenness centrality)等网络度量,以及社区检测(community detection)算法,这些都是理解网络结构和影响力的关键工具。 4. **Writing your own code**: 在掌握了基本操作后,学习如何编写自定义代码来扩展分析能力,可能是利用NetworkX提供的API或开发新的算法来适应特定问题。 5. **You are ready for your own analysis!**: 最后,通过以上学习,参与者将具备独立进行网络分析的能力,可以运用到自己的项目中,无论是学术研究还是商业应用。 NetworkX库包含了许多用于生成、加载、操作和可视化网络的函数和方法。它支持多种数据格式的导入和导出,例如图文件(GraphML, GEXF)和网络科学领域常用的其他格式。此外,NetworkX还与许多其他Python库(如NumPy、SciPy和Matplotlib)集成良好,便于进行数值计算、统计分析和图形绘制。 通过学习和实践,你可以利用Python和NetworkX深入理解社交网络中的连接模式,发现隐藏的社区结构,识别关键人物,甚至预测网络行为。这不仅对社会科学家有价值,也对数据科学家、市场营销专家和任何需要理解和操纵复杂关系数据的领域具有重要意义。
2018-04-04 上传
This book covers construction, exploration, analysis, and visualization of complex networks using NetworkX (a Python library), as well as several other Python modules, and Gephi, an interactive environment for network analysts. The book is not an introduction to Python. I assume that you already know the language, at least at the level of a freshman programming course. The book consists of five parts, each covering specific aspects of complex networks. Each part comes with one or more detailed case studies. Part I presents an overview of the main Python CNA modules: NetworkX, iGraph, graph-tool, and networkit. It then goes over the construction of very simple networks both programmatically (using NetworkX) and interactively (in Gephi), and it concludes by presenting a network of Wikipedia pages related to complex networks. In Part II, you’ll look into networks based on explicit relationships (such as social networks and communication networks). This part addresses advanced network construction and measurement techniques. The capstone case study—a network of “Panama papers”—illustrates possible money-laundering patterns in Central Asia. Networks based on spatial and temporal co-occurrences—such as semantic and product networks—are the subject of Part III. The third part also explores macroscopic and mesoscopic complex network structure. It paves the way to network-based cultural domain analysis and a marketing study of Sephora cosmetic products. If you cannot find any direct or indirect relationships between the items, but still would like to build a network of them, the contents of Part IV come to the rescue. You will learn how to find out if items are similar, and you will convert quantitative similarities into network edges. A network of psychological trauma types is one of the outcomes of the fourth part. The book concludes with Part V: directed networks with plenty of examples, including a network of qualitative adjectives that you could use in computer games or