高斯混合模型在多模态过程监测与模态识别中的应用
75 浏览量
更新于2024-09-03
1
收藏 359KB PDF 举报
本文主要探讨了基于高斯混合模型(GMM)的多模态过程模态识别与过程监测技术,适用于解决多变量、多工序、变量时变性以及模态转换时间不确定的复杂生产过程的监测问题。作者提出的方法结合了定性知识和定量知识,有效地处理了离线数据的模态划分、稳定模态和过渡模态的监测模型建立,以及在线数据的模态识别。
在多模态复杂过程中,由于工艺的多样性和动态变化,传统的过程监测方法往往难以有效应对。高斯混合模型作为一种概率模型,可以用来描述数据的概率分布,尤其适用于表示非高斯或复杂的分布情况。在本文中,GMM被用于建模不同模态下的过程数据,通过学习和估计数据的分布参数,可以区分出不同的过程状态,即模态。
在离线阶段,GMM首先应用于对历史数据进行分析,识别出不同的模态,这包括稳定的长期运行状态(稳定模态)和过渡期间的短期状态(过渡模态)。通过对这些模态的学习,可以构建相应的监测模型,为后续的在线监测提供基础。
在线监测阶段,实时采集的数据会被输入到已训练好的GMM模型中,通过计算每个模态的概率,确定当前过程所处的状态。模态识别的关键在于确定最可能的模态分配,这通常涉及最大后验概率(MAP)或者期望最大化(EM)算法的使用。
此外,定性知识和定量知识的结合是本文方法的一个亮点。定性知识可以来自于专家经验或者工艺规则,它提供了关于过程行为和模式转换的高层次理解。而定量知识则依赖于实际测量数据,两者相互补充,提高了模态识别的准确性和鲁棒性。
在具体应用中,本文提到了连续退火机组作为案例。连续退火机组是一种典型的多模态过程,其工作条件和性能受到多个变量的影响,如温度、压力和速度等,因此,基于GMM的模态识别和过程监测技术对其优化和故障预防具有重要意义。
总结来说,这项研究通过采用GMM和结合定性定量知识的方法,为多模态过程的监测提供了一种有效解决方案,有助于提高生产效率,降低异常发生的风险,并且为过程控制和决策提供了有力工具。该方法可以推广到其他类似的复杂工业过程,对提升工业自动化水平具有积极的促进作用。
170 浏览量
103 浏览量
309 浏览量
633 浏览量
170 浏览量
105 浏览量
290 浏览量
1449 浏览量
2025-01-14 上传

weixin_38558660
- 粉丝: 2
最新资源
- 易酷免费影视系统:开源网站代码与简易后台管理
- Coursera美国人口普查数据集及使用指南解析
- 德加拉6800卡监控:性能评测与使用指南
- 深度解析OFDM关键技术及其在通信中的应用
- 适用于Windows7 64位和CAD2008的truetable工具
- WM9714声卡与DW9000网卡数据手册解析
- Sqoop 1.99.3版本Hadoop 2.0.0环境配置指南
- 《Super Spicy Gun Game》游戏开发资料库:Unity 2019.4.18f1
- 精易会员浏览器:小尺寸多功能抓包工具
- MySQL安装与故障排除及代码编写全攻略
- C#与SQL2000实现的银行储蓄管理系统开发教程
- 解决Windows下Pthread.dll缺失问题的方法
- I386文件深度解析与oki5530驱动应用
- PCB涂覆OSP工艺应用技术资源下载
- 三菱PLC自动调试台程序实例解析
- 解决OpenCV 3.1编译难题:配置必要的库文件