Python图像分割技术与Heroku部署指南

需积分: 12 0 下载量 78 浏览量 更新于2024-12-21 收藏 269KB ZIP 举报
资源摘要信息:"图像分割技术与Python应用" 在计算机视觉领域,图像分割是将数字图像细分为多个图像区域(像素集)或对象的过程。图像分割的目的是简化或改变图像的表示,使其更易于理解和处理。在这个过程中,每个像素被分配一个标签,通常用于指定它是否属于特定的区域或对象。图像分割是许多计算机视觉应用的重要组成部分,如物体检测、图像识别、增强现实、医学成像等。 本文件提供的信息涵盖了使用Python语言及其相关软件包进行图像分割的基本知识,包括但不限于NumPy、Matplotlib和OpenCV。Python因其丰富的库和简洁的语法,在图像处理和计算机视觉领域中被广泛使用。 NumPy是一个支持大量维度数组与矩阵运算的库,它是Python科学计算的基础包。在图像分割中,NumPy常用于处理图像数据,进行矩阵操作以及优化算法的执行速度。 Matplotlib是一个用于创建静态、动态、交互式可视化的Python库。在图像处理中,Matplotlib通常用于显示图像、绘制分割结果的可视化图像以及创建图表等。 OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉和机器学习软件库。OpenCV含有众多图像处理和分析的函数,非常适合进行图像分割等操作。它支持多种编程语言,其中包括Python。OpenCV提供了许多实用的图像处理工具,比如颜色空间转换、边缘检测、形态学操作、特征提取等。 在描述中提及的小丑鱼图像数据集,是用来演示颜色空间分割技术的一个实例。颜色空间分割是根据颜色信息将图像分割成多个区域的技术。小丑鱼的亮橙色因其明显的颜色特性,易于被分割出来。在实际应用中,可以根据不同颜色范围创建掩码,然后应用到原始图像上,以分离出特定颜色的对象。 此外,文件还提到了Heroku Buildpacks的概念。Heroku是一个云平台即服务(PaaS),允许开发者通过其提供的工具和环境来部署、管理和扩展应用。Heroku Buildpacks是一个或一组脚本,用于编译应用程序,以便在Heroku平台上运行。对于使用Python、OpenCV等技术栈的图像分割应用,如果需要在Heroku上部署,可能需要配置特定的buildpack来确保所有依赖项被正确安装。 描述中还提到了Aptfile的作用。Aptfile是一个特定的文件,通常用于指定Heroku应用在构建过程中需要安装的额外Linux包。在提到的情况下,由于OpenCV具有一些默认未安装在Heroku上的依赖项,所以需要创建一个Aptfile文件,并列出所需的依赖包,如libsm6、libxrender1、libfontconfig1和libice6等。这些依赖项将通过apt buildpack在构建过程中被安装,从而确保应用在Heroku上正常运行。 总结而言,文件介绍了基于Python的图像分割技术,重点放在了计算机视觉和图像处理库上,同时提到了将应用部署到云平台Heroku时可能需要的技术和配置细节。通过这些信息,我们可以了解到进行图像分割所需的基本知识和部署应用时可能遇到的技术问题及其解决方案。

给出相同功能的代码import os import numpy as np import nibabel as nib import imageio from PIL import Image def read_niifile(niifilepath): # 读取niifile文件 img = nib.load(niifilepath) # 提取niifile文件 img_fdata = img.get_fdata(dtype='float32') return img_fdata def save_fig(niifilepath, savepath, num, name): # 保存为图片 name = name.split('-')[1] filepath_seg = niifilepath + "segmentation\" + "segmentation-" + name filepath_vol = niifilepath + "volume\" + "volume-" + name savepath_seg = savepath + "segmentation\" savepath_vol = savepath + "volume\" if not os.path.exists(savepath_seg): os.makedirs(savepath_seg) if not os.path.exists(savepath_vol): os.makedirs(savepath_vol) fdata_vol = read_niifile(filepath_vol) fdata_seg = read_niifile(filepath_seg) (x, y, z) = fdata_seg.shape total = x * y for k in range(z): silce_seg = fdata_seg[:, :, k] if silce_seg.max() == 0: continue else: silce_seg = (silce_seg - silce_seg.min()) / (silce_seg.max() - silce_seg.min()) * 255 silce_seg = np.uint8(Image.fromarray(silce_seg).convert('L')) silce_seg = cv2.threshold(silce_seg, 1, 255, cv2.THRESH_BINARY)[1] if (np.sum(silce_seg == 255) / total) > 0.015: silce_vol = fdata_vol[:, :, k] silce_vol = (silce_vol - silce_vol.min()) / (silce_vol.max() - silce_vol.min()) * 255 silce_vol = np.uint8(Image.fromarray(silce_vol).convert('L')) imageio.imwrite(os.path.join(savepath_seg, '{}.png'.format(num)), silce_seg) imageio.imwrite(os.path.join(savepath_vol, '{}.png'.format(num)), silce_vol) num += 1 return num if name == 'main': path = r'C:\Users\Administrator\Desktop\LiTS2017' savepath = r'C:\Users\Administrator\Desktop\2D-LiTS2017' filenames = os.listdir(path + "segmentation") num = 0 for filename in filenames: num = save_fig(path, savepath, num, filename)

2023-05-25 上传

替换掉此代码里的import cv2模块,import os import numpy as np import nibabel as nib import imageio import cv2 def read_niifile(niifilepath): # 读取niifile文件 img = nib.load(niifilepath) # 提取niifile文件 img_fdata = img.get_fdata(dtype='float32') return img_fdata def save_fig(niifilepath, savepath, num, name): # 保存为图片 name = name.split('-')[1] filepath_seg = niifilepath + "segmentation\" + "segmentation-" + name filepath_vol = niifilepath + "volume\" + "volume-" +name savepath_seg = savepath + "segmentation\" savepath_vol = savepath + "volume\" if not os.path.exists(savepath_seg): os.makedirs(savepath_seg) if not os.path.exists(savepath_vol): os.makedirs(savepath_vol) fdata_vol = read_niifile(filepath_vol) fdata_seg = read_niifile(filepath_seg) (x, y, z) = fdata_seg.shape total = x * y for k in range(z): silce_seg = fdata_seg[:, :, k] # 三个位置表示三个不同角度的切片 if silce_seg.max() == 0: continue else: silce_seg = (silce_seg-silce_seg.min())/(silce_seg.max() - silce_seg.min())*255 silce_seg = cv2.threshold(silce_seg, 1, 255, cv2.THRESH_BINARY)[1] if (np.sum(silce_seg == 255) / total) > 0.015: silce_vol = fdata_vol[:, :, k] silce_vol = (silce_vol - silce_vol.min()) / (silce_vol.max() - silce_vol.min()) * 255 imageio.imwrite(os.path.join(savepath_seg, '{}.png'.format(num)), silce_seg) imageio.imwrite(os.path.join(savepath_vol, '{}.png'.format(num)), silce_vol) num += 1 # 将切片信息保存为png格式 return num if name == 'main': path= 'E:\dataset\LiTS17\' savepath = 'E:\dataset\LiTS17\2d\' filenames = os.listdir(path + "segmentation") num = 0 for filename in filenames: num = save_fig(path, savepath, num, filename)

2023-05-25 上传

import os import numpy as np import nibabel as nib import imageio import cv2 def read_niifile(niifilepath): # 读取niifile文件 img = nib.load(niifilepath) # 提取niifile文件 img_fdata = img.get_fdata(dtype='float32') return img_fdata def save_fig(niifilepath, savepath, num, name): # 保存为图片 name = name.split('-')[1] filepath_seg = niifilepath + "segmentation\" + "segmentation-" + name filepath_vol = niifilepath + "volume\" + "volume-" + name savepath_seg = savepath + "segmentation\" savepath_vol = savepath + "volume\" if not os.path.exists(savepath_seg): os.makedirs(savepath_seg) if not os.path.exists(savepath_vol): os.makedirs(savepath_vol) fdata_vol = read_niifile(filepath_vol) fdata_seg = read_niifile(filepath_seg) (x, y, z) = fdata_seg.shape total = x * y for k in range(z): silce_seg = fdata_seg[:, :, k] # 三个位置表示三个不同角度的切片 if silce_seg.max() == 0: continue else: silce_seg = (silce_seg - silce_seg.min()) / (silce_seg.max() - silce_seg.min()) * 255 silce_seg = cv2.threshold(silce_seg, 1, 255, cv2.THRESH_BINARY)[1] if (np.sum(silce_seg == 255) / total) > 0.015: silce_vol = fdata_vol[:, :, k] silce_vol = (silce_vol - silce_vol.min()) / (silce_vol.max() - silce_vol.min()) * 255 imageio.imwrite(os.path.join(savepath_seg, '{}.png'.format(num)), silce_seg) imageio.imwrite(os.path.join(savepath_vol, '{}.png'.format(num)), silce_vol) num += 1 # 将切片信息保存为png格式 return num if name == 'main': path = r"C:\Users\Administrator\Desktop\LiTS2017" savepath = r"C:\Users\Administrator\Desktop\2D-LiTS2017" filenames = os.listdir(path + "segmentation") num = 0 for filename in filenames: num = save_fig(path, savepath, num, filename) 替换掉代码中的cv2模块,实现相同功能

2023-05-25 上传

import os import numpy as np import nibabel as nib import imageio import cv2 def read_niifile(niifilepath): # 读取niifile文件 img = nib.load(niifilepath) # 提取niifile文件 img_fdata = img.get_fdata(dtype='float32') return img_fdata def save_fig(niifilepath, savepath, num, name): # 保存为图片 name = name.split('-')[1] filepath_seg = niifilepath + "segmentation\\" + "segmentation-" + name filepath_vol = niifilepath + "volume\\" + "volume-" + name savepath_seg = savepath + "segmentation\\" savepath_vol = savepath + "volume\\" if not os.path.exists(savepath_seg): os.makedirs(savepath_seg) if not os.path.exists(savepath_vol): os.makedirs(savepath_vol) fdata_vol = read_niifile(filepath_vol) fdata_seg = read_niifile(filepath_seg) (x, y, z) = fdata_seg.shape total = x * y for k in range(z): silce_seg = fdata_seg[:, :, k] # 三个位置表示三个不同角度的切片 if silce_seg.max() == 0: continue else: silce_seg = (silce_seg - silce_seg.min()) / (silce_seg.max() - silce_seg.min()) * 255 silce_seg = cv2.threshold(silce_seg, 1, 255, cv2.THRESH_BINARY)[1] if (np.sum(silce_seg == 255) / total) > 0.015: silce_vol = fdata_vol[:, :, k] silce_vol = (silce_vol - silce_vol.min()) / (silce_vol.max() - silce_vol.min()) * 255 imageio.imwrite(os.path.join(savepath_seg, '{}.png'.format(num)), silce_seg) imageio.imwrite(os.path.join(savepath_vol, '{}.png'.format(num)), silce_vol) num += 1 # 将切片信息保存为png格式 return num if __name__ == '__main__': path = r"C:\Users\Administrator\Desktop\LiTS2017" savepath = r"C:\Users\Administrator\Desktop\2D-LiTS2017" filenames = os.listdir(path + "segmentation") num = 0 for filename in filenames: num = save_fig(path, savepath, num, filename)替换掉代码中的cv2模块,实现相同功能

2023-05-25 上传