Python自然语言处理实战:机器学习与深度学习解锁文本数据

需积分: 10 6 下载量 161 浏览量 更新于2024-07-17 收藏 3.82MB PDF 举报
"Natural Language Processing Recipes: Unlocking Text Data with Machine Learning" 是一本专注于通过Python实现自然语言处理(NLP)应用的书籍,采用问题解决的方式,覆盖了文本分类、词性标注、主题建模、文本摘要、文本生成、实体抽取和情感分析等多个领域。 本书首先介绍了清理和预处理文本数据的方法,以及如何使用高级算法进行文本分析。书中详细阐述了语义和句法分析的实际应用,包括文本规范化、高级预处理、词性标注和情感分析等。读者还将学习到机器学习和深度学习在NLP中的各种应用,如信息检索、文本摘要、情感分析和其他高级NLP技术。 书中的编程练习旨在帮助读者快速部署NLP技术,以便在实际项目中更有效地开发。书中涉及的Python库包括NLTK、TextBlob、spaCy、Stanford CoreNLP等,这些都是NLP领域常用的工具。 目标读者是希望刷新和学习NLP概念的数据科学家,通过编码练习来加深理解和实践。无论是在文本挖掘、信息提取还是智能对话系统等领域,这本书都提供了一个实用的工具箱,使读者能够应对各种实际问题。 "Natural Language Processing Recipes" 是一个全面的指南,涵盖了从基础的文本处理到复杂的机器学习模型在NLP中的应用,适合有一定Python基础并希望深入理解NLP技术的读者。通过阅读本书,读者可以提升自己在NLP领域的技能,更好地处理和利用文本数据。
2017-08-11 上传
Python Natural Language Processing by Jalaj Thanaki English | 31 July 2017 | ISBN: 1787121429 | ASIN: B072B8YWCJ | 486 Pages | AZW3 | 11.02 MB Key Features Implement Machine Learning and Deep Learning techniques for efficient natural language processing Get started with NLTK and implement NLP in your applications with ease Understand and interpret human languages with the power of text analysis via Python Book Description This book starts off by laying the foundation for Natural Language Processing and why Python is one of the best options to build an NLP-based expert system with advantages such as Community support, availability of frameworks and so on. Later it gives you a better understanding of available free forms of corpus and different types of dataset. After this, you will know how to choose a dataset for natural language processing applications and find the right NLP techniques to process sentences in datasets and understand their structure. You will also learn how to tokenize different parts of sentences and ways to analyze them. During the course of the book, you will explore the semantic as well as syntactic analysis of text. You will understand how to solve various ambiguities in processing human language and will come across various scenarios while performing text analysis. You will learn the very basics of getting the environment ready for natural language processing, move on to the initial setup, and then quickly understand sentences and language parts. You will learn the power of Machine Learning and Deep Learning to extract information from text data. By the end of the book, you will have a clear understanding of natural language processing and will have worked on multiple examples that implement NLP in the real world. What you will learn Focus on Python programming paradigms, which are used to develop NLP applications Understand corpus analysis and different types of data attribute. Learn NLP using Python libraries such as NLTK, Polyglot,
2019-01-31 上传
Implement natural language processing applications with Python using a problem-solution approach. This book has numerous coding exercises that will help you to quickly deploy natural language processing techniques, such as text classification, parts of speech identification, topic modeling, text summarization, text generation, entity extraction, and sentiment analysis. Natural Language Processing Recipes starts by offering solutions for cleaning and preprocessing text data and ways to analyze it with advanced algorithms. You’ll see practical applications of the semantic as well as syntactic analysis of text, as well as complex natural language processing approaches that involve text normalization, advanced preprocessing, POS tagging, and sentiment analysis. You will also learn various applications of machine learning and deep learning in natural language processing. By using the recipes in this book, you will have a toolbox of solutions to apply to your own projects in the real world, making your development time quicker and more efficient. What You Will Learn Apply NLP techniques using Python libraries such as NLTK, TextBlob, spaCy, Stanford CoreNLP, and many more Implement the concepts of information retrieval, text summarization, sentiment analysis, and other advanced natural language processing techniques. Identify machine learning and deep learning techniques for natural language processing and natural language generation problems Who This Book Is For Data scientists who want to refresh and learn various concepts of natural language processing through coding exercises.
2019-04-05 上传
Natural Language Processing Recipes: Unlocking Text Data with Machine Learning and Deep Learning using Python(2019) (自然语言处理秘诀:使用Python通过机器学习和深度学习解锁文本数据) Natural Language Processing Recipes - Unlocking Text Data with Machine Learning and Deep Learning using Python[2019].pdf 253页 3.8 MB 使用Python使用问题解决方法实现自然语言处理应用程序。这本书有许多编码练习,将帮助您快速部署自然语言处理技术,如文本分类、部分语音识别、主题建模、文本摘要、文本生成、实体提取和情感分析。 自然语言处理配方首先提供清洗和预处理文本数据的解决方案,以及使用高级算法分析文本数据的方法。您将看到文本语义和句法分析的实际应用,以及涉及文本规范化、高级预处理、pos标记和情感分析的复杂自然语言处理方法。您还将学习机器学习和自然语言处理中的深度学习的各种应用。 通过使用本书中的配方,您将拥有一个解决方案工具箱,可以应用于现实世界中您自己的项目,使您的开发时间更快、更高效。 你将学到什么 •使用python库(如nltk、textblob、spacy、斯坦福corenlp等)应用nlp技术 •实施信息检索、文本总结、情感分析和其他高级自然语言处理技术的概念。 •识别自然语言处理和自然语言生成问题的机器学习和深度学习技术 这本书是给谁的 希望通过编码练习刷新和学习自然语言处理的各种概念的数据科学家。