C++实现无父指针红黑树:高效插删查操作
81 浏览量
更新于2024-08-29
收藏 57KB PDF 举报
"这篇资源是关于C++实现的无父指针红黑树代码,它在旋转操作中利用栈来存储节点的祖先信息,包括叔叔、父亲等。这个红黑树实现了基本的插入、删除和查找操作,并且已经过部分在线判题系统的测试,未发现错误。"
红黑树是一种自平衡二叉查找树,它的每个节点都带有颜色属性,可以是红色或黑色。这种数据结构在插入和删除操作后能保持近似平衡,从而确保了高效的查找性能。在这个C++实现中,红黑树节点不包含父节点指针,而是通过其他方式(如栈)来处理旋转过程中的祖先关系。
模板类`RBNode`定义了红黑树的节点结构,包含颜色、键值、数据、左右子节点指针。节点初始化时,默认颜色为红色,左右子节点为空。`RBTree`类则封装了红黑树的主要操作,如`root`表示树的根节点,`_size`记录树中节点的数量。
`RotateL`和`RotateR`函数分别执行左旋和右旋操作,这是红黑树在插入和删除操作后恢复平衡的关键步骤。左旋操作中,当前节点的右子节点变为新的根节点,原根节点成为新根节点的左子节点;右旋操作反之。这两个操作都需要更新节点的子节点指针。
`Search`函数用于查找指定键值的节点,如果找到则返回对应的数据显示`found`为真,否则返回一个默认值并设置`found`为假。
`Insert`函数实现了插入操作,首先从根节点开始遍历树,如果找到相同的键值,则更新数据;如果未找到,则插入新节点。在插入新节点后,可能需要进行一系列的旋转和重新着色操作来维护红黑树的性质。
这个红黑树的实现还包括删除操作,通常涉及到替换、颜色翻转和旋转等复杂步骤,但具体内容未在摘要中给出。不过,根据描述,这个实现已经通过了一些在线判题系统的测试,表明其功能相对完整和正确。
由于红黑树的性质保证了最坏情况下的查找、插入和删除操作的时间复杂度都是O(log n),因此它是许多高效数据结构和算法(如关联数组、集合等)的基础。这个实现没有父指针的设计可以节省空间,但可能增加旋转操作的复杂性。
405 浏览量
201 浏览量
157 浏览量
143 浏览量
213 浏览量
152 浏览量
139 浏览量
2024-03-21 上传
148 浏览量
weixin_38512781
- 粉丝: 6
最新资源
- 系统开发与运行基础:软件工程与需求分析
- Lua编程艺术:简洁与扩展
- Ant入门指南:Java项目构建与Eclipse集成
- ASP.NET数据验证控件电子书籍详解
- 分片连续算法实现高清晰图像缩放
- 构建基于AJAX的无刷新电子邮件系统
- 入门游戏设计:从 Saving Sera 到编程实践
- C++指针详解:数组、指针数组与多维指针
- WebSphere Portal 6.0与DB2 8.2.5安装与配置指南
- 深入解析J2EE的13大核心技术
- HP SIM 5.2安装与配置指南:Windows版详细教程
- ASP入门教程:动态网站设计揭秘
- C/C++面试笔试深度解析:从基础到高级
- JSP2.0技术入门指南:Java Servlet与JSF基础
- 数据库中的利器:存储过程详解与优势
- ATM与ADSL技术详解:电信网络基础