LTCC技术在Ka波段无源腔体优化设计中的应用
需积分: 5 44 浏览量
更新于2024-08-11
收藏 342KB PDF 举报
"本文主要探讨了在Ka波段利用低温共烧陶瓷(LTCC)技术设计小型化收发组件时遇到的挑战及解决方案。针对电磁场干扰问题,作者提出了LTCC无源等效腔体模型,将有源芯片嵌入腔体中。然而,腔体效应可能导致串扰和振荡,影响放大器的工作稳定性。为解决这一问题,文章提出了将腔体谐振频率设计远离工作频率的方法,并在无源等效腔体设计中应用了两种不同的馈电结构。通过结合基于神经网络模型的遗传算法和三维电磁场仿真软件,对无源等效腔体的参数进行了优化设计。经过优化,得出了4.5mm×3.5mm的最优无源等效腔体尺寸,确保了放大器工作的稳定性。关键词包括:Ka波段、等效腔体、无源腔体、LTCC、神经网络和遗传算法。"
在这篇论文中,作者首先介绍了低温共烧陶瓷(LTCC)技术在Ka波段收发组件小型化设计中的应用。LTCC技术因其高集成度和优良的电磁性能而受到关注。为了减少电磁场干扰,作者提出了一个创新的无源等效腔体模型,该模型能够容纳有源芯片,有效解决了电磁兼容性问题。
然而,腔体内部的电磁效应会引发串扰和振荡,对放大器的稳定工作构成威胁。为避免这种情况,研究者建议将腔体的谐振频率设计在远离工作频率的位置,以此降低不稳定性。在实际设计过程中,他们采用了两种不同的馈电结构,以增加设计的灵活性和适应性。
优化设计的关键在于找到最佳的无源等效腔体参数。为此,作者结合了基于神经网络模型的遗传算法,这是一种强大的全局优化工具,能够处理复杂的多目标优化问题。同时,他们还利用三维电磁场仿真软件进行数值模拟,以验证和优化设计。通过这两种方法的结合,最终确定了4.5mm×3.5mm的无源等效腔体尺寸,这被认为是保证放大器稳定运行的最优尺寸。
这篇论文的贡献在于提供了一种有效的腔体设计策略,它不仅考虑了电磁兼容性,还通过优化设计确保了放大器的性能。这种设计方法对于未来Ka波段微波组件的小型化和高性能化具有重要的参考价值。
2020-08-12 上传
2020-08-11 上传
2021-03-13 上传
2021-03-13 上传
2023-02-04 上传
2016-11-20 上传
2020-11-03 上传
2020-10-23 上传
2020-10-25 上传
weixin_38719719
- 粉丝: 11
- 资源: 1013
最新资源
- AA4MM开源软件:多建模与模拟耦合工具介绍
- Swagger实时生成器的探索与应用
- Swagger UI:Trunkit API 文档生成与交互指南
- 粉红色留言表单网页模板,简洁美观的HTML模板下载
- OWIN中间件集成BioID OAuth 2.0客户端指南
- 响应式黑色博客CSS模板及前端源码介绍
- Eclipse下使用AVR Dragon调试Arduino Uno ATmega328P项目
- UrlPerf-开源:简明性能测试器
- ConEmuPack 190623:Windows下的Linux Terminator式分屏工具
- 安卓系统工具:易语言开发的卸载预装软件工具更新
- Node.js 示例库:概念证明、测试与演示
- Wi-Fi红外发射器:NodeMCU版Alexa控制与实时反馈
- 易语言实现高效大文件字符串替换方法
- MATLAB光学仿真分析:波的干涉现象深入研究
- stdError中间件:简化服务器错误处理的工具
- Ruby环境下的Dynamiq客户端使用指南