OpenCV中的霍夫线变换详解与应用

需积分: 50 9 下载量 75 浏览量 更新于2024-09-10 收藏 3.85MB PPTX 举报
"OpenCV 霍夫线变换PPT讲解" OpenCV 是一个强大的开源计算机视觉库,它提供了一套全面的工具集,用于处理图像处理和计算机视觉任务。OpenCV 支持多种编程语言,包括 C++, Python, Java 等,使得开发者能够方便地构建视觉应用。其主要设计目的是实现高效且易于使用的接口,尤其适用于实时系统。OpenCV 库包含了丰富的算法,涵盖了从基本图像处理到高级的机器学习和计算机视觉任务,例如对象检测、图像分割、特征匹配、视频分析等。 霍夫变换是图像处理中的一种经典方法,常用来检测图像中的直线和圆。这种变换的核心思想是将图像空间中的直线或圆转换到参数空间中的点,通过统计这些点的出现频率来找到目标形状。在OpenCV中,霍夫变换有两种形式:霍夫线变换和霍夫圆变换。 霍夫线变换是寻找图像中直线的常用技术。在OpenCV中,可以使用`HoughLines`函数来实现。霍夫线变换基于极坐标系统,其中ρ表示原点到直线的距离,θ表示直线与水平轴的夹角。每一对ρ和θ值对应图像中的一条直线。对于图像中的每个像素,我们都会在ρ-θ参数空间中画出对应的正弦曲线。当这些曲线在参数空间中交叉时,表示图像中有直线通过这两点。通过累加这些交叉点,我们可以找到具有最多交点的ρ-θ组合,这些组合代表了图像中最明显的直线。 在实际应用中,霍夫线变换对于检测图像中的边缘特别有用,比如在车辆检测、文字识别、道路分割等领域。霍夫线变换的一个优点是它不受噪声和图像中直线部分的不连续性影响,因为它考虑了所有可能的直线。但是,这种方法可能会消耗较大的计算资源,特别是在处理高分辨率图像时。 为了优化性能,OpenCV 提供了改进的霍夫变换版本,如累积概率霍夫变换(Probabilistic Hough Transform, PHT),这种方法更为高效,因为它只存储最有可能属于直线的点,而不是所有的点。这使得PHT在处理大量数据时更加实用,尤其是在实时系统中。 总结来说,OpenCV 的霍夫线变换是计算机视觉领域中识别和检测直线的有力工具。通过理解霍夫变换的基本原理和OpenCV提供的实现,开发者可以有效地处理图像中的几何特征,为各种应用场景提供支持,如智能交通系统、工业自动化、图像分析等。
2431 浏览量
import cv2 as cv import numpy as np def hough_circle(image): #因为霍夫检测对噪声很明显,所以需要先滤波一下。 dst =cv.pyrMeanShiftFiltering(image,10,100) cimage=cv.cvtColor(dst,cv.COLOR_BGR2GRAY) circles = cv.HoughCircles(cimage,cv.HOUGH_GRADIENT,1,40,param1=40,param2=29,minRadius=30,maxRadius=0) #把circles包含的圆心和半径的值变为整数 circles = np.uint16(np.around(circles)) for i in circles[0]: cv.circle(image,(i[0],i[1]),i[2],(0,255,0),3) cv.imshow("circle",image) src = cv.imread("E:/opencv/picture/coins.jpg") cv.imshow("inital_window",src) hough_circle(src) cv.waitKey(0) cv.destroyAllWindows() 霍夫圆变换的基本思路是认为图像上每一个非零像素点都有可能是一个潜在的圆上的一点, 跟霍夫线变换一样,也是通过投票,生成累积坐标平面,设置一个累积权重来定位圆。 在笛卡尔坐标系中圆的方程为: 其中(a,b)是圆心,r是半径,也可以表述为: 即 在笛卡尔的xy坐标系中经过某一点的所有圆映射到abr坐标系中就是一条三维的曲线: 经过xy坐标系中所有的非零像素点的所有圆就构成了abr坐标系中很多条三维的曲线。 在xy坐标系中同一个圆上的所有点的圆方程是一样的,它们映射到abr坐标系中的是同一个点,所以在abr坐标系中该点就应该有圆的总像素N0个曲线相交。 通过判断abr中每一点的相交(累积)数量,大于一定阈值的点就认为是圆。 以上是标准霍夫圆变换实现算法。 问题是它的累加到一个三维的空间,意味着比霍夫线变换需要更多的计算消耗。 Opencv霍夫圆变换对标准霍夫圆变换做了运算上的优化。 它采用的是“霍夫梯度法”。它的检测思路是去遍历累加所有非零点对应的圆心,对圆心进行考量。 如何定位圆心呢?圆心一定是在圆上的每个点的模向量上,即在垂直于该点并且经过该点的切线的垂直线上,这些圆上的模向量的交点就是圆心。 霍夫梯度法就是要去查找这些圆心,根据该“圆心”上模向量相交数量的多少,根据阈值进行最终的判断。 bilibili: 注意: 1.OpenCV的霍夫圆变换函数原型为:HoughCircles(image, method, dp, minDist[, circles[, param1[, param2[, minRadius[, maxRadius]]]]]) -> circles image参数表示8位单通道灰度输入图像矩阵。 method参数表示圆检测方法,目前唯一实现的方法是HOUGH_GRADIENT。 dp参数表示累加器与原始图像相比的分辨率的反比参数。例如,如果dp = 1,则累加器具有与输入图像相同的分辨率。如果dp=2,累加器分辨率是元素图像的一半,宽度和高度也缩减为原来的一半。 minDist参数表示检测到的两个圆心之间的最小距离。如果参数太小,除了真实的一个圆圈之外,可能错误地检测到多个相邻的圆圈。如果太大,可能会遗漏一些圆圈。 circles参数表示检测到的圆的输出向量,向量内第一个元素是圆的横坐标,第二个是纵坐标,第三个是半径大小。 param1参数表示Canny边缘检测的高阈值,低阈值会被自动置为高阈值的一半。 param2参数表示圆心检测的累加阈值,参数值越小,可以检测越多的假圆圈,但返回的是与较大累加器值对应的圆圈。 minRadius参数表示检测到的圆的最小半径。 maxRadius参数表示检测到的圆的最大半径。 2.OpenCV画圆的circle函数原型:circle(img, center, radius, color[, thickness[, lineType[, shift]]]) -> img img参数表示源图像。 center参数表示圆心坐标。 radius参数表示圆的半径。 color参数表示设定圆的颜色。 thickness参数:如果是正数,表示圆轮廓的粗细程度。如果是负数,表示要绘制实心圆。 lineType参数表示圆线条的类型。 shift参数表示圆心坐标和半径值中的小数位数。