分类数据分析:逻辑回归与线性模型在医学研究中的应用

需积分: 10 6 下载量 173 浏览量 更新于2024-07-23 收藏 3.66MB PDF 举报
"Categorical Data Analysis" 是一本由Alan Agresti教授编著的书籍,主要探讨了分类数据的分析方法,特别关注了逻辑回归模型和线性模型的应用、检验及参数估计。这本书对于医学研究,尤其是医生研究疾病具有重要的参考价值。 在数据分析领域,分类数据是一种常见的数据类型,包括离散的类别或者等级,如性别、疾病类型等。本书深入浅出地介绍了如何处理和分析这类数据。逻辑回归模型是分析二项或多元分类响应变量与连续或分类预测变量关系的重要工具,广泛应用于医学研究中的疾病预测和诊断。例如,医生可能利用患者的一些特征(如年龄、性别、症状等)构建逻辑回归模型,以预测患者是否患有某种疾病。 线性模型,如方差分析(ANOVA)和线性回归,是处理连续数值型数据与分类变量关系的经典方法。在书中,作者详细阐述了如何构建和验证这类模型,以及如何进行参数估计,以了解分类变量如何影响连续变量。这对于理解疾病与风险因素之间的定量关系至关重要。 此外,书中的内容可能还包括模型选择、模型假设的检查、残差分析以及模型的解释和报告。这些方法有助于确保模型的准确性和可靠性。书中还可能讨论了处理缺失数据、异常值和多重比较问题的策略,这些都是实际数据分析中经常遇到的问题。 Alan Agresti教授的这部作品不仅涵盖了理论基础,还提供了实际案例和应用示例,使得读者能够将所学知识应用到实际研究中。无论是统计初学者还是经验丰富的研究者,都能从中受益,提升在分类数据分析方面的技能。 “Categorical Data Analysis”是一本全面介绍分类数据统计分析的权威著作,对于医学研究人员、公共卫生专家以及其他需要处理分类数据的科学家来说,是一本不可或缺的参考书。通过学习本书,读者将能够更好地理解和运用逻辑回归和线性模型,从而在疾病研究和预测中做出更科学、更精确的决策。
2016-10-05 上传
分享产生价值! A valuable new edition of a standard reference "A 'must-have' book for anyone expecting to do research and/or applications in categorical data analysis." –Statistics in Medicine on Categorical Data Analysis, First Edition The use of statistical methods for categorical data has increased dramatically, particularly for applications in the biomedical and social sciences. Responding to new developments in the field as well as to the needs of a new generation of professionals and students, this new edition of the classic Categorical Data Analysis offers a comprehensive introduction to the most important methods for categorical data analysis. Designed for statisticians and biostatisticians as well as scientists and graduate students practicing statistics, Categorical Data Analysis, Second Edition summarizes the latest methods for univariate and correlated multivariate categorical responses. Readers will find a unified generalized linear models approach that connects logistic regression and Poisson and negative binomial regression for discrete data with normal regression for continuous data. Adding to the value in the new edition is coverage of: Three new chapters on methods for repeated measurement and other forms of clustered categorical data, including marginal models and associated generalized estimating equations (GEE) methods, and mixed models with random effects Stronger emphasis on logistic regression modeling of binary and multicategory data An appendix showing the use of SAS for conducting nearly all analyses in the book Prescriptions for how ordinal variables should be treated differently than nominal variables Discussion of exact small-sample procedures More than 100 analyses of real data sets to illustrate application of the methods, and more than 600 exercises An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.