基于CEEMDAN-VMD-CNN-BiLSTM的多变量时序预测技术(Matlab源码详细分析)
版权申诉
5星 · 超过95%的资源 98 浏览量
更新于2024-10-12
1
收藏 6.8MB ZIP 举报
资源摘要信息: "CEEMDAN-VMD-CNN-BiLSTM-multihead-Attention多变量时序预测(Matlab完整源码和数据)"
本资源包提供了基于CEEMDAN(完全自适应噪声集合经验模态分解)、VMD(变分模态分解)、CNN(卷积神经网络)、BiLSTM(双向长短期记忆神经网络)以及多头注意力机制相结合的多变量时序预测方法的Matlab完整源码和相关数据集。该方法适用于对复杂多变量时序数据进行预测分析,如风电场发电量预测等实际应用。源码文件包括了数据预处理、模型构建、训练和测试的全过程,具体文件功能如下:
1. calc_error.m:计算误差的函数,用于评估模型预测的准确性,包括均方差(MSE)、根均方差(RMSE)、平均绝对误差(MAE)、平均相对百分误差(MAPE)和R2评分。
2. SampleEntropy.m:样本熵计算函数,用于衡量时间序列数据的复杂度,为后续的kmeans聚类提供依据。
3. data_collation.m:数据整理函数,用于对原始数据进行整合、格式化等预处理工作。
4. CEEMDAN(完全自适应噪声集合经验模态分解):包含用于执行CEEMDAN分解的函数或算法描述。
***.mat:模型保存文件,包含了训练好的网络模型参数,方便直接加载和使用。
6. Co_data.mat:协变量数据文件,可能包含用于模型训练和测试的原始数据或特征。
7. 风电场预测.xlsx:风电场发电量预测的数据集文件,包含历史发电数据以及可能的环境变量等多变量信息。
8. ster2_CEEMDAN_VMD_CNNBiLSTMMATT.m:主函数文件,整合了整个预测流程,包括数据处理、模型构建、训练、预测和误差分析等步骤。
9. step1_CEEMDAN_Kmeans_VMD.m:该文件包含第一步数据处理,即使用CEEMDAN分解,样本熵计算和kmeans聚类,然后调用VMD对高频分量进行二次分解的步骤。
整体流程为:
- 数据输入后,首先使用CEEMDAN分解,提取内在的模态分量。
- 计算每个模态分量的样本熵,根据熵值对样本进行kmeans聚类。
- 利用VMD算法对高频模态分量进行二次分解,以获得更细致的特征信息。
- 将VMD分解的高频分量与CEEMDAN中的其他分量(如Co_IMF2和Co_IMF3)作为输入数据送入CNN-BiLSTM结合多头注意力机制的深度学习模型中进行训练和预测。
- 输出预测结果,并计算MSE、RMSE、MAE、MAPE和R2等误差指标,以评估模型性能。
在Matlab环境下运行本资源包的源码,可以实现对给定多变量时间序列数据的精确预测,并通过误差分析调整模型参数,优化预测精度。对于涉及时间序列分析、模式识别、预测建模等领域的研究者和工程师来说,这是一个宝贵的资源。需要注意的是,由于源码涉及复杂的数学运算和深度学习算法,使用者应具备一定的数学基础和Matlab编程经验。
2024-07-14 上传
2024-07-14 上传
2024-11-25 上传
2024-11-25 上传
2024-11-25 上传
2024-11-25 上传
前程算法屋
- 粉丝: 5492
- 资源: 782
最新资源
- crossword_collab
- python玛丽冒险的程序.rar
- SafeQueue:C++ 中的线程安全队列实现
- C++ Template 电子版 pdf
- IrisSkin4.dll.zip
- Visible-开源
- 店滴AI,AI数据的应用与挖掘,可以快速搭建基于人脸数据,软硬件交互场景业务的免费开源框架
- 房地产行业打工人必看:最新上海轨交房租金.rar
- 批量推送路由交换配置命令
- 2013年-2022年最新全国城市的PM2.5数据-博州.zip
- calendar:基于 Backbone.js 的单页日历
- 方向余弦矩阵到欧拉角:以“方向余弦矩阵”作为输入并输出欧拉角(对于ZYX序列)-matlab开发
- mrswitch:网站的代码库-内置Laravel 5.1
- ippicv-2020-lnx-intel64-20191018-general.tgz
- 振荡电路频率计算器 计算RC电路,LC电路频率.zip
- 基于vue、datav、Echart框架的大数据可视化模板,提供数据动态刷新渲染、屏幕适应内部图表自由替换Mixins注入等功能