复杂网络的统计力学原理

5星 · 超过95%的资源 需积分: 9 28 下载量 200 浏览量 更新于2024-08-01 收藏 1.01MB PDF 举报
"复杂网络统计力学的原版书籍,作者为Reka Albert和Albert-Laszlo Barabasi,深入探讨复杂网络的基础理论和统计力学原理。该书关注于复杂网络的拓扑结构和动态,包括小世界网络、无标度网络的模型分析,并讨论了这些模型与实际网络的关系。" 在复杂网络的研究中,统计力学提供了一种理解和预测系统整体行为的有效方法。《Statistical Mechanics of Complex Networks》一书由Reka Albert和Albert-Laszlo Barabasi撰写,这两位学者在复杂网络领域有着深厚的学术贡献。他们通过这本书,旨在揭示那些自然和社会系统中的复杂网络背后的基本规律。 复杂网络的概念广泛应用于各个领域,例如细胞内的生物化学反应网络、互联网中的路由器和计算机连接网络等。传统上,这些网络通常被简化为随机图来建模,但随着研究的深入,人们逐渐认识到真实网络的拓扑结构和演化遵循着稳定的组织原则。 书中首先回顾了引发对网络兴趣的实证数据,这些数据揭示了网络结构的非随机特性。接着,作者介绍了主要的模型和分析工具,包括经典的随机图理论,这是理解网络基本特性的基础。然后,他们详细阐述了"小世界网络"(Small-World Networks)模型,这种模型体现了网络中节点间短路径的特点,以及"无标度网络"(Scale-Free Networks)理论,这种网络表现出节点度分布的幂律特征,即少数节点拥有大量的连接,而大多数节点只有少量连接。 此外,作者还探讨了这些模型之间的相互作用,以及它们如何反映并解释现实世界网络的多样性和复杂性。他们讨论了网络动力学,如节点的加入、删除或失效如何影响整体网络的稳定性和功能,以及这些动态过程如何影响网络的演化。同时,书中可能还包括了网络的可生存性、传播动力学、模块化结构以及网络的同步和控制等问题。 通过对这些理论和模型的深入分析,本书不仅为复杂网络的理论研究提供了坚实的基础,也为实际问题的解决提供了理论指导,例如网络的优化设计、故障检测和恢复策略等。对于想要了解复杂网络本质以及其在现实世界应用的读者来说,这本书是一份宝贵的资源。

With the rapid development of China's economy, the per capita share of cars has rapidly increased, bringing great convenience to people's lives. However, with it came a huge number of traffic accidents. A statistical data from Europe shows that if a warning can be issued to drivers 0.5 seconds before an accident occurs, 70% of traffic accidents can be avoided. Therefore, it is particularly important to promptly remind drivers of potential dangers to prevent traffic accidents from occurring. The purpose of this question is to construct a machine vision based driving assistance system based on machine vision, providing driving assistance for drivers during daytime driving. The main function of the system is to achieve visual recognition of pedestrians and traffic signs, estimate the distance from the vehicle in front, and issue a warning to the driver when needed. This driving assistance system can effectively reduce the probability of traffic accidents and ensure the safety of drivers' lives and property. The main research content of this article includes the following aspects: 1. Implement object detection based on the YOLOv5 model. Conduct research on convolutional neural networks and YOLOv5 algorithm, and develop an object detection algorithm based on YOLO5. Detect the algorithm through road images, and analyze the target detection algorithm based on the data returned after training. 2. Estimate the distance from the front vehicle based on a monocular camera. Study the principle of estimating distance with a monocular camera, combined with parameters fed back by object detection algorithms, to achieve distance estimation for vehicles ahead. Finally, the distance estimation function was tested and the error in the system's distance estimation was analyzed. 3. Design and implementation of a driving assistance system. Based on the results of two parts: target detection and distance estimation, an intelligent driving assistance system is constructed. The system is tested through actual road images, and the operational effectiveness of the intelligent driving assistance system is analyzed. Finally, the driving assistance system is analyzed and summarized.

2023-06-03 上传