EVIEWS软件时间序列分析实验教程
需积分: 9 107 浏览量
更新于2024-08-02
2
收藏 835KB DOC 举报
"时间序列分析实验指导"
时间序列分析是一种统计方法,用于研究和预测按时间顺序排列的数据序列。在本实验中,重点是利用EVIEWS软件对不同类型的平稳时间序列模型进行拟合分析。EVIEWS是一款强大的经济学和统计学应用软件,常用于数据分析、回归分析、时间序列建模等任务。
实验内容涵盖了多个关键环节:
1. **平稳时间序列模型**:平稳时间序列是指其统计特性(如均值、方差和协方差)不随时间变化的序列。这类模型对于预测和建模非常重要,因为它们假设未来数据的概率分布与过去相似。
2. **AR(p)模型**:自回归模型(AR模型)描述了当前观测值与过去若干期观测值的线性组合。AR(p)模型中,p表示过去观测值的数量。这个模型用于捕捉序列的自相关性。
3. **MA(q)模型**:移动平均模型(MA模型)则考虑了当前观测值与过去的误差项的线性组合。在MA(q)模型中,q是误差项的数量。这种模型用于处理残差序列的自相关性。
4. **ARMA(p,q)模型**:自回归移动平均模型(ARMA模型)结合了AR和MA模型的特点,它同时包含自回归项和移动平均项。ARMA(p,q)模型中的p是自回归项的阶数,q是移动平均项的阶数,用于捕捉更复杂的序列结构。
实验中,学生将通过以下步骤学习和应用这些模型:
- **相关函数操作**:了解Eviews的菜单和命令方式,这包括创建工作文件、输入数据以及执行各种时间序列分析操作。
- **时间序列的差分**:差分是将序列转化为平稳的过程,包括简单差分和季节性差分,有助于消除趋势和季节性。
- **自相关和偏自相关图**:通过这些图形可以识别序列的自相关性和滞后效应,帮助确定AR和MA模型的阶数。
- **模型识别、检验和诊断**:建立ARMA模型后,需通过AIC、BIC准则选择最佳模型,并进行拉格朗日乘子检验(Lagrange Multiplier Test)和残差诊断,确保模型的有效性和无自相关性。
- **预测**:利用选定的ARMA模型进行未来数据的预测,这是时间序列分析的重要应用之一。
- **非平稳性检验**:如ADF(Augmented Dickey-Fuller)检验,判断序列是否为非平稳,以便采取适当的差分或转换。
这套实验教学指导书强调理论与实践的结合,通过实际案例和应用软件操作,提升学生的分析能力和模型建立技能。此外,还介绍了其他统计软件,如SPSS、SAS、MATLAB,旨在拓宽学生的视野,提高他们解决实际问题的能力。实验旨在逐步引导学生理解时间序列分析的全过程,从数据预处理到模型构建、检验和预测,从而更好地理解和应用时间序列分析方法。
2021-10-01 上传
2023-05-28 上传
冬天里的呼噜
- 粉丝: 0
- 资源: 1
最新资源
- Android圆角进度条控件的设计与应用
- mui框架实现带侧边栏的响应式布局
- Android仿知乎横线直线进度条实现教程
- SSM选课系统实现:Spring+SpringMVC+MyBatis源码剖析
- 使用JavaScript开发的流星待办事项应用
- Google Code Jam 2015竞赛回顾与Java编程实践
- Angular 2与NW.js集成:通过Webpack和Gulp构建环境详解
- OneDayTripPlanner:数字化城市旅游活动规划助手
- TinySTM 轻量级原子操作库的详细介绍与安装指南
- 模拟PHP序列化:JavaScript实现序列化与反序列化技术
- ***进销存系统全面功能介绍与开发指南
- 掌握Clojure命名空间的正确重新加载技巧
- 免费获取VMD模态分解Matlab源代码与案例数据
- BuglyEasyToUnity最新更新优化:简化Unity开发者接入流程
- Android学生俱乐部项目任务2解析与实践
- 掌握Elixir语言构建高效分布式网络爬虫