章国锋教授解析视觉SLAM技术:实时定位与三维建图的应用
需积分: 46 131 浏览量
更新于2024-07-17
1
收藏 44.6MB PDF 举报
视觉同时定位与地图构建(Visual Simultaneous Localization and Mapping, SLAM)是机器人学和计算机视觉领域的核心问题,它旨在在一个未知环境中实时估计设备的位置(姿态)并构建三维场景结构。章国锋教授在CSIG第一届全国SLAM技术论坛于2022年7月28日至29日在浙江大学召开的会议上,对视觉SLAM技术及其广泛应用进行了深入探讨。
视觉SLAM是通过摄像头捕捉的图像数据来实现定位和建图,它广泛应用于增强现实(Augmented Reality)、虚拟现实(Virtual Reality)、机器人导航(包括自动驾驶)等领域。在实际操作中,SLAM系统通常包含两个主要工作线程:实时的前端传感器数据处理,负责计算设备的当前位置和方向;以及后台优化模块,进行局部或全局地图的优化,包括检测和解决循环闭合(Loop Closure Detection),这有助于减少累积误差。
传统的SLAM框架通常涉及以下几个步骤:
1. 输入:接收传感器数据,如RGB图像、深度图像、惯性测量单元(IMU)数据等。
2. 前端处理:在一个前台线程中,实时计算设备的位姿。
3. 后台优化:在后台,通过优化算法处理这些数据,形成局部地图,并寻找可能的循环闭合证据,以提升地图精度。
4. 输出:最终结果包括设备的位置信息、三维点云以及用于进一步处理的传感器数据。
视觉SLAM有多种实现方式,根据硬件配置的不同,可以采用单目相机、双目相机或多目相机。辅助传感器如廉价的IMU和GPS,以及深度相机也被广泛应用,以提高系统的成本效益。视觉SLAM的优势在于较低的成本、在小空间内高精度的定位能力,以及无需预先设置场景的特点。
在小范围内,视觉SLAM尤其适合于那些对位置准确性要求较高的应用场景,比如室内导航或者机器人自主探索。然而,由于光照、遮挡和纹理缺乏等因素,视觉SLAM在复杂环境中的性能可能会受到挑战。因此,研究者们持续致力于改进算法,提升鲁棒性和效率,以便在各种环境下都能有效运行。
章国锋教授的报告涵盖了视觉SLAM的基本原理、关键技术、硬件选择以及其在现代科技中的关键作用,为我们提供了深入了解这一前沿技术的宝贵资源。参加这次论坛的听众不仅能够学习到最新的研究成果,还能了解到如何将这些技术应用于实际产品和解决方案中。
点击了解资源详情
点击了解资源详情
点击了解资源详情
2019-08-23 上传
2019-05-21 上传
点击了解资源详情
2018-10-11 上传
2018-12-08 上传
2019-08-20 上传
CLM_Only
- 粉丝: 21
- 资源: 46
最新资源
- 移动项目
- control_repo
- merge-sort:合并排序实现
- 【Java毕业设计】Java-web实现的毕业设计选题系统.zip
- hystrix-springmvc:只是一点 hystrix + spring mvc 示例
- three.js-打造VR看房 快速掌握3D开发
- 组织项目验证:我想我可以使用Maven强制实施程序插件,但是我想要一些更灵活的东西,并且不需要root版本
- UIButton-Bootstrap(iPhone源代码)
- Terraform
- xdProf: extensible, distributed profiler-开源
- 双轮自平衡运动小车(红外遥控)-电路方案
- 【Java毕业设计】Java 毕业设计,小程序毕业设计,Android 毕业设计.zip
- webRTC-chat-server
- 点文件
- 密码学算法的C#工程源码_DES_AES_Present_Euclid_Primality_C#工程源码
- chimmera:尝试创建chimmera的第一个移动应用程序