计算机系统结构历年试题解析:性能优化与一致性探讨

需积分: 10 2 下载量 200 浏览量 更新于2024-09-07 1 收藏 64KB DOCX 举报
《计算机系统结构》历年考试题目汇总包含了多个重要概念和理论的简答题,旨在测试学生对计算机硬件体系结构的理解。以下是每个问题的详细解析: 1. 指令流水计算机中的独立缓存:独立的指令缓存(Instruction Cache, IC)与数据缓存(Data Cache, DC)的优势在于: - 提高了系统性能:指令和数据被分别存储,减少了同时读取两者时的竞争,从而提高缓存命中率,降低访存延迟。 - 降低访存冲突:指令缓存与数据缓存独立,有助于减少指令和数据之间的竞争,减少指令解码时的冲突。 2. 指令动态调度:指令动态调度是一种根据处理器当前状态和任务需求实时调整执行顺序的策略,它允许处理器根据优先级、依赖关系等动态选择下一条待执行指令,从而提高系统吞吐量和响应速度。 - 寄存器重命名:通过为每个使用过的寄存器分配新的虚拟名,解决了因数据冲突导致的寄存器使用冲突问题,使多个程序段可以同时使用同一个物理寄存器。 3. 时间与空间局部性: - 数据局部性:程序在执行过程中倾向于访问相邻的内存位置,这是时间局部性(Temporal Locality),如连续读取的数据流。 - 指令局部性:程序倾向于重复执行同一段代码,这是空间局部性(Spatial Locality),如循环和函数调用。 4. 虚拟地址索引缓存的问题:直接使用虚拟地址索引缓存可能导致频繁的页表查找,影响缓存性能。由于虚拟地址映射到物理地址的过程中可能涉及页表查询,这会带来额外的开销,尤其是在虚拟内存管理复杂的情况下。 5. 多处理机缓存一致性:在多处理器系统中,缓存一致性是至关重要的,因为多个处理器可能同时修改共享数据。一致性策略确保所有处理器看到的数据都是最新的,防止数据不一致性和死锁问题,常见的策略有 MESI(Modified, Exclusive, Shared, Invalidated)协议等。 此外,考题还涵盖了填空题,涉及处理器网络结构、向量处理器性能、指令级并行、流水线优化调度、指令系统设计以及内存访问性能分析等内容。这些问题涵盖了计算机系统结构的各个方面,不仅测试了理论知识,也考察了解决实际问题的能力。理解和掌握这些知识点对于深入理解计算机硬件底层运作机制至关重要。
2009-11-18 上传
第一章 计算机体系结构的基本概念 1.1 引论 1.2 计算机体系结构的概念 1.2.1 计算机系统中的层次概念 1.2.2 计算机体系结构 1.2.3 计算机组成和计算机实现技术 1.3 计算机体系结构的发展 1.3.1 存储程序计算机体系结构及其发展 1.3.2 计算机的分代和分型 1.3.3 应用需求的发展 1.3.4 计算机实现技术的发展 1.3. 5 体系结构的生命周期 1.4 计算机体系结构中并行性的发展 1.4.1并行性概念 1.4.2 提高并行性的技术途径 1.5 定量分析技术基础 1.5.1 计算机性能的评测 1.5.2 测试程序 1.5.3 性能设计和评测的基本原则 1.5.4 CPU的性能 1.6 影响计算机体系结构的成本和价格因素 1.6.1 集成电路的成本 1.6.2 计算机系统的成本和价格 1.7 小结习题一第二章 计算机指令集结构设计 2.1 指令集结构的分类 2.1.1 指令集结构的分类 2.1.2 通用寄存器型指令集结构分类 2.2 寻址技术 2.3 指令集结构的功能设计 2.3.1 CISC计算机指令集结构的功能设计 2.3.2 RISC计算机指令集结构的功能设计 2.3.3 控制指令 2.4 操作数的类型、表示和大小 2.5 指令集格式的设计 2.5.1 寻址方式的表示方法 2.5.2 指令集格式的选择 2.6 编译技术与计算机体系结构设计 2.6.1 现代编译器的结构和相关技术 2.6.2 现代编译技术对计算机体系结构设计的影响 2.6.3 计算机体系结构对当前编译技术的影响 2.7 DLX指令集结构 2.7.1 DLX指令集结构 2.7.2 DLX指令集结构效能分析 2.8 小结习题二第三章 流水线技术 3.1 流水线的基本概念 3.1.1 流水线的基本概念 3.1.2 流水线的分类 3.2 DLX的基本流水线 3.2.1 DLX的一种简单实现 3.2.2 基本的DLX流水线 3.2.3 流水线性能分析 3. 3 流水线中的相关 3.3.1 流水线的结构相关 3.3.2 流水线的数据相关 3.3.3 流水线的控制相关 3.4 流水线计算机实例分析(MIPS R4000) 3.4.1 MIPS R4000整型流水线 3.4.2 MIPS R4000浮点流水线 3.4.3 MIPS R4000流水线的性能分析 3.5 向量处理机 3.5.1 向量处理方式和向量处理机 3.5.2 向量处理机实例分析 3.6 小结习题三第四章 指令级并行 4.1 指令级并行的概念 4.1.1 循环展开调度的基本方法 4.1.2 相关性 4.2 指令的动态调度 4.2.1 动态调度的原理 4.2.2 动态调度算法之一:记分牌 4.2.3 动态调度算法之二:Tomasulo算法 4.3 控制相关的动态解决技术 4.3.1 减少分支延迟:分支预测缓冲技术 4.3.2 进一步减少分支延迟:分支目标缓冲 4.3.3 基于硬件的推断执行 4.4 多指令流出技术 4.4.1 超标量技术 4.4.2 多指令流出的动态调度 4.4.3 超长指令字技术 4.4.4 多流出处理器受到的限制 4.5 小结习题四第五章 存储层次 5.1 存储器的层次结构 5.1.1 从单级存储器到多级存储器 5.1.2 存储层次的性能参数 5.1.3 “Cache—主存”和“主存—辅存”层次 5.1.4 存储层次的四个问题 5.2 Cache基本知识 5.2.1 映象规则 5.2.2 查找方法 5.2.3 替换算法 5.2.4 写策略 5.2.5 Cache的结构 5.2.6 Cache性能分析 5.2.7 改进Cache性能 5.3 降低Cache失效率的方法 5.3.1 增加Cache块大小 5.3.2 提高相联度 5.3.3 Victim Cache 5.3.4 伪相联Cache 5.3.5 硬件预取技术 5.3.6 由编译器控制的预取 5.3.7 编译器优化 5.4 减少Cache失效开销 5.4.1 让读失效优先于写 5.4.2 子块放置技术 5.4.3 请求字处理技术 5.4.4 非阻塞Cache技术 5.4.5 采用两级Cache 5.5 减少命中时间 5.5.1 容量小,结构简单的Cache 5.5.2 虚拟Cache 5.5.3 写操作流水化 5.5.4 Cache优化技术小结 5.6 主存 5.6.1 存储器技术 5.6.2 提高主存性能的存储器组织结构 5.7 虚拟存储器 5.7.1 虚拟存储器基本原理 5.7.2 快表(TLB) 5.7.3 页面大小的选择 5.8 进程保护和虚存实例 5.8.1 进程保护 5.8.2 页式虚存举例:Alpha AXP的存储管理和21064的TLB 5.9 Alpha AXP 21064存储层次 5.10 小结习题五第六章 输入输出系统 6.1 概述 6.2 存储设备 6.2.1 磁盘设备 6.2.2 磁带设备 6.2.3 光盘设备 6.3 总线 6.3.1 总线分类 6.3.2 总线基本工作原理 6.3.3 总线使用 6.3.4 总线标准和实例 6.3.5 设备的连接 6.3.6 CPU与I/O处理的匹配 6.4 通道处理机 6.4.1 通道的作用和功能 6.4.2 通道的工作过程 6.4.3 通道种类 6.4.4 通道中的数据传送过程 6.4.5 通道的流量分析 6.5 I/O与操作系统 6.5.1 I/O和Cache数据一致性 6.5.2 DMA和虚拟存储器 6.6 I/O系统设计 6.7 小结习题六第七章 多处理机 7.1 引言 7.1.1 并行计算机体系结构的分类 7.1.2 通信模型和存储器的结构模型 7.1.3 通信机制的性能 7.1.4 不同通信机制的优点 7.1.5 并行处理面临的挑战 7.1.6 并行程序的计算/通信比率 7.2 多处理机的存储器体系结构 7.2.1 集中式共享存储器体系结构 7.2.2 分布式共享存储器体系结构 7.3 互连网络 7.3.1 互连网络的性能参数 7.3.2 静态连接网络 7.3.3 动态连接网络 7.4 同步与通信 7.4.1 同步机制 7.4.2 大规模机器的同步 7.5 并行化技术 7.5.1 并行化的基本策略 7.5.2 并行语育与编译器 7.6 多处理机实例 7.6.1 Challenge多处理机系统 7.6.2 Origin 20007.