AFS与遗传算法驱动的精确模糊分类器设计
需积分: 0 72 浏览量
更新于2024-09-06
收藏 324KB PDF 举报
本篇论文深入探讨了"基于AFS理论及遗传算法的模糊分类器的设计"这一主题,由张红艳和刘晓东两位作者合作完成,发表于大连理工大学的相关学术期刊。AFS理论(Axiomatic Fuzzy Set)是一种创新的模糊数据处理方法,它强调用AFS代数和AFS结构来刻画模糊数据的不确定性和原始数据的随机分布特性,从而克服了传统隶属度函数主观性和算子选择的随意性,提供了一种更为精确和客观的描述方式。
在论文中,作者提出了一种新颖的模糊分类器设计策略,即首先利用AFS理论计算出更加精确的隶属函数,这些函数能够更好地反映数据的特性,保留原始数据信息。然后,通过这些隶属函数构建模糊规则,规则的形成依赖于AFS理论的数学基础。接下来,遗传算法被引入到这一过程中,用于对模糊规则进行优化和删减,以达到减少冗余规则同时保持高分类准确性的目标。
相比于传统的模糊分类方法,如使用三角函数或t-标准定义的隶属函数,这种基于AFS和遗传算法的分类器设计方法展示了显著的优势。论文还指出,模糊分类在多个领域如图像处理、文字识别、语音识别、文本分类、遥感和工业自动化控制中具有广泛的应用潜力。
实验部分展示了新方法在iris和breast数据集上的实际应用效果,验证了这种方法在提高分类准确性和规则简洁性方面的有效性。通过对AFS理论的深入理解和巧妙融合遗传算法,这篇论文为模糊分类器的设计提供了创新思路和技术支持,对于模糊逻辑和数据挖掘领域的研究者来说,具有很高的参考价值。
2019-09-12 上传
2022-06-26 上传
2021-10-16 上传
2021-09-25 上传
2021-09-05 上传
2021-07-13 上传
2019-08-21 上传
2021-08-08 上传
weixin_39840515
- 粉丝: 448
- 资源: 1万+
最新资源
- R语言中workflows包的建模工作流程解析
- Vue统计工具项目配置与开发指南
- 基于Spearman相关性的协同过滤推荐引擎分析
- Git基础教程:掌握版本控制精髓
- RISCBoy: 探索开源便携游戏机的设计与实现
- iOS截图功能案例:TKImageView源码分析
- knowhow-shell: 基于脚本自动化作业的完整tty解释器
- 2011版Flash幻灯片管理系统:多格式图片支持
- Khuli-Hawa计划:城市空气质量与噪音水平记录
- D3-charts:轻松定制笛卡尔图表与动态更新功能
- 红酒品质数据集深度分析与应用
- BlueUtils: 经典蓝牙操作全流程封装库的介绍
- Typeout:简化文本到HTML的转换工具介绍与使用
- LeetCode动态规划面试题494解法精讲
- Android开发中RxJava与Retrofit的网络请求封装实践
- React-Webpack沙箱环境搭建与配置指南