经典教材:Thomas《算法导论》第三版——软件开发者必读

需积分: 9 1 下载量 42 浏览量 更新于2024-07-25 收藏 5.61MB PDF 举报
《算法导论》(Introduction to Algorithms)第三版是由Thomas H. Cormen、Charles E. Leiserson、Ronald L. Rivest和Clifford Stein四位作者合著的经典计算机科学教材,由麻省理工学院出版社于2009年出版。这本书专为软件开发人员设计,旨在提供全面且实用的算法参考,无论是在研究领域还是在实际编程工作中都具有重要价值。 该书的核心内容围绕计算机算法展开,详细介绍了算法的基础理论、设计方法以及常见问题的解决方案。作为一本经典的算法教材,它覆盖了广泛的主题,包括但不限于: 1. **算法基础**:介绍算法的定义、基本概念,以及它们在解决计算问题中的作用。讲解了算法分析,如时间复杂度和空间复杂度的衡量,帮助读者理解算法效率的重要性。 2. **排序与查找**:深入讨论了各种排序算法(如冒泡排序、快速排序、归并排序等),以及高效的查找数据结构(如二分查找、哈希表)。 3. **图算法**:涉及图的表示和操作,如深度优先搜索(DFS)和广度优先搜索(BFS)、最短路径算法(Dijkstra算法、Floyd-Warshall算法)以及网络流问题。 4. **动态规划**:介绍了优化问题的求解策略,如背包问题、最长公共子序列等典型问题的算法设计。 5. **字符串处理**:探讨字符串匹配、编辑距离、模式匹配等算法,对于文本处理和自然语言处理有广泛应用。 6. **数据结构**:涵盖了线性表、栈、队列、树和图等基础数据结构的设计与分析,这些都是实现高效算法的关键。 7. **高级主题**:包括图算法的进一步扩展(如最小生成树、最大流最小割)、并行算法、近似算法和在线算法等内容,反映了当前算法研究的前沿。 《算法导论》第三版不仅适合计算机科学专业的学生作为学习材料,也对从事软件开发的工程师来说是一本实用工具书。它的严谨性和权威性使得它在全球范围内享有盛誉,是许多大学计算机科学课程的标准教材。无论是初学者还是经验丰富的专业人士,都能从中获得丰富的理论知识和实践经验。
2012-11-21 上传
中文名: 算法导论 原名: Introduction to Algorithms 作者: Thomas H.Cormen, 达特茅斯学院计算机科学系副教授 Charles E.Leiserson, 麻省理工学院计算机科学与电气工程系教授 Ronald L.Rivest, 麻省理工学院计算机科学系Andrew与Erna Viterbi具名教授 Clifford Stein, 哥伦比亚大学工业工程与运筹学副教授 资源格式: PDF(完整书签目录) 出版社: The MIT Press ISBN 978-0-262-03384-8 (hardcover : alk. paper)—ISBN 978-0-262-53305-8 (pbk. : alk. paper) 发行时间: 2009年09月30日 地区: 美国 语言: 英文 1 The Role of Algorithms in Computing 5 1.1 Algorithms 5 1.2 Algorithms as a technology 11 2 Getting Started 16 2.1 Insertion sort 16 2.2 Analyzing algorithms 23 2.3 Designing algorithms 29 3 Growth of Functions 43 3.1 Asymptotic notation 43 3.2 Standard notations and common functions 53 4 Divide-and-Conquer 65 4.1 The maximum-subarray problem 68 4.2 Strassen's algorithm for matrix multiplication 75 4.3 The substitution method for solving recurrences 83 4.4 The recursion-tree method for solving recurrences 88 4.5 The master method for solving recurrences 93 4.6 Proof of the master theorem 97 5 Probabilistic Analysis and Randomized Algorithms 114 5.1 The hiring problem 114 5.2 Indicator random variables 118 5.3 Randomized algorithms 122 5.4 Probabilistic analysis and further uses of indicator random variables 130 II Sorting and Order Statistics Introduction 147 6 Heapsort 151 6.1 Heaps 151 6.2 Maintaining the heap property 154 6.3 Building a heap 156 6.4 The heapsort algorithm 159 6.5 Priority queues 162 7 Quicksort 170 7.1 Description of quicksort 170 7.2 Performance of quicksort 174 7.3 A randomized version of quicksort 179 7.4 Analysis of quicksort 180 8 Sorting in Linear Time 191 8.1 Lower bounds for sorting 191 8.2 Counting sort 194 8.3 Radix sort 197 8.4 Bucket sort 200 9 Medians and Order Statistics 213 9.1 Minimum and maximum 214 9.2 Selection in expected linear time 215 9.3 Selection in worst-case linear time 220 III Data Structures Introduction 229 10 Elementary Data Structures 232 10.1 Stacks and queues 232 10.2 Linked lists 236 10.3 Implementing pointers and objects 241 10.4 Representing rooted trees 246 11 Hash Tables 253 11.1 Direct-address tables 254 11.2 Hash tables 256 11.3 Hash functions 262 11.4 Open addressing 269 11.5 Perfect hashing 277 12 Binary Search Trees 286 12.1 What is a binary search tree? 286 12.2 Querying a binary search tree 289 12.3 Insertion and deletion 294 12.4 Randomly built binary search trees 299 13 Red-Black Trees 308 13.1 Properties of red-black trees 308 13.2 Rotations 312 13.3 Insertion 315 13.4 Deletion 323 14 Augmenting Data Structures 339 14.1 Dynamic order statistics 339 14.2 How to augment a data structure 345 14.3 Interval trees 348 IV Advanced Design and Analysis Techniques Introduction 357 15 Dynamic Programming 359 15.1 Rod cutting 360 15.2 Matrix-chain multiplication 370 15.3 Elements of dynamic programming 378 15.4 Longest common subsequence 390 15.5 Optimal binary search trees 397 16 Greedy Algorithms 414 16.1 An activity-selection problem 415 16.2 Elements of the greedy strategy 423 16.3 Huffman codes 428 16.4 Matroids and greedy methods 437 16.5 A task-scheduling problem as a matroid 443 17 Amortized Analysis 451 17.1 Aggregate analysis 452 17.2 The accounting method 456 17.3 The potential method 459 17.4 Dynamic tables 463 V Advanced Data Structures Introduction 481 18 B-Trees 484 18.1 Definition of B-trees 488 18.2 Basic operations on B-trees 491 18.3 Deleting a key from a B-tree 499 19 Fibonacci Heaps 505 19.1 Structure of Fibonacci heaps 507 19.2 Mergeable-heap operations 510 19.3 Decreasing a key and deleting a node 518 19.4 Bounding the maximum degree 523 20 van Emde Boas Trees 531 20.1 Preliminary approaches 532 20.2 A recursive structure 536 20.3 The van Emde Boas tree 545 21 Data Structures for Disjoint Sets 561 21.1 Disjoint-set operations 561 21.2 Linked-list representation of disjoint sets 564 21.3 Disjoint-set forests 568 21.4 Analysis of union by rank with path compression 573 VI Graph Algorithms Introduction 587 22 Elementary Graph Algorithms 589 22.1 Representations of graphs 589 22.2 Breadth-first search 594 22.3 Depth-first search 603 22.4 Topological sort 612 22.5 Strongly connected components 615 23 Minimum Spanning Trees 624 23.1 Growing a minimum spanning tree 625 23.2 The algorithms of Kruskal and Prim 631 24 Single-Source Shortest Paths 643 24.1 The Bellman-Ford algorithm 651 24.2 Single-source shortest paths in directed acyclic graphs 655 24.3 Dijkstra's algorithm 658 24.4 Difference constraints and shortest paths 664 24.5 Proofs of shortest-paths properties 671 25 All-Pairs Shortest Paths 684 25.1 Shortest paths and matrix multiplication 686 25.2 The Floyd-Warshall algorithm 693 25.3 Johnson's algorithm for sparse graphs 700 26 Maximum Flow 708 26.1 Flow networks 709 26.2 The Ford-Fulkerson method 714 26.3 Maximum bipartite matching 732 26.4 Push-relabel algorithms 736 26.5 The relabel-to-front algorithm 748 VII Selected Topics Introduction 769 27 Multithreaded Algorithms Sample Chapter - Download PDF (317 KB) 772 27.1 The basics of dynamic multithreading 774 27.2 Multithreaded matrix multiplication 792 27.3 Multithreaded merge sort 797 28 Matrix Operations 813 28.1 Solving systems of linear equations 813 28.2 Inverting matrices 827 28.3 Symmetric positive-definite matrices and least-squares approximation 832 29 Linear Programming 843 29.1 Standard and slack forms 850 29.2 Formulating problems as linear programs 859 29.3 The simplex algorithm 864 29.4 Duality 879 29.5 The initial basic feasible solution 886 30 Polynomials and the FFT 898 30.1 Representing polynomials 900 30.2 The DFT and FFT 906 30.3 Efficient FFT implementations 915 31 Number-Theoretic Algorithms 926 31.1 Elementary number-theoretic notions 927 31.2 Greatest common divisor 933 31.3 Modular arithmetic 939 31.4 Solving modular linear equations 946 31.5 The Chinese remainder theorem 950 31.6 Powers of an element 954 31.7 The RSA public-key cryptosystem 958 31.8 Primality testing 965 31.9 Integer factorization 975 32 String Matching 985 32.1 The naive string-matching algorithm 988 32.2 The Rabin-Karp algorithm 990 32.3 String matching with finite automata 995 32.4 The Knuth-Morris-Pratt algorithm 1002 33 Computational Geometry 1014 33.1 Line-segment properties 1015 33.2 Determining whether any pair of segments intersects 1021 33.3 Finding the convex hull 1029 33.4 Finding the closest pair of points 1039 34 NP-Completeness 1048 34.1 Polynomial time 1053 34.2 Polynomial-time verification 1061 34.3 NP-completeness and reducibility 1067 34.4 NP-completeness proofs 1078 34.5 NP-complete problems 1086 35 Approximation Algorithms 1106 35.1 The vertex-cover problem 1108 35.2 The traveling-salesman problem 1111 35.3 The set-covering problem 1117 35.4 Randomization and linear programming 1123 35.5 The subset-sum problem 1128 VIII Appendix: Mathematical Background Introduction 1143 A Summations 1145 A.1 Summation formulas and properties 1145 A.2 Bounding summations 1149 B Sets, Etc. 1158 B.1 Sets 1158 B.2 Relations 1163 B.3 Functions 1166 B.4 Graphs 1168 B.5 Trees 1173 C Counting and Probability 1183 C.1 Counting 1183 C.2 Probability 1189 C.3 Discrete random variables 1196 C.4 The geometric and binomial distributions 1201 C.5 The tails of the binomial distribution 1208 D Matrices 1217 D.1 Matrices and matrix operations 1217 D.2 Basic matrix properties 122