高数值孔径透镜下多光子成像的球差效应分析

0 下载量 135 浏览量 更新于2024-08-27 收藏 200KB PDF 举报
"这篇论文探讨了在多光子显微镜(MPM)中,由于组织与沉浸介质之间折射率不匹配导致的信号衰减和分辨率下降问题。高数值孔径(NA)的沉浸物镜通常用于将激发光聚焦到生物组织内部。然而,组织的折射率通常不同于沉浸介质,这会产生球面像差,随着成像深度增加,信号质量和分辨率会降低。论文通过分析近似和数值模拟来研究这种折射率不匹配引起的像差对相关物理参数的明确依赖性。" 正文: 多光子显微镜是生物学和生命科学研究中一种至关重要的技术,它能够观察亚细胞结构,尤其是在活体组织中的应用。MPM利用非线性光学效应,如二次谐波生成或荧光,使得仅在焦点区域内的深度内产生信号,从而实现深层组织成像并减少背景噪声。然而,实际操作中面临的一大挑战是,由于生物组织和沉浸介质(如水或油)之间存在的折射率差异,会导致球面像差,进而影响成像质量和分辨率。 高数值孔径的物镜设计用于提供更精确的聚焦能力,但折射率不匹配会引入像差,这会导致随着成像深度的增加,信号强度减弱,图像分辨率降低。这种现象对于深层组织成像尤其显著,因为光需要通过更多的组织层,受到的像差影响更大。作者Ping Qiu和Chen He在他们的研究中,试图揭示这种折射率不匹配引起的像差与各种物理参数之间的明确关系,以提供改善成像性能的方法。 他们采用两种方法进行研究:一是解析近似,通过对光学系统的基本方程进行数学处理,来获取关于像差的理论理解;二是数值模拟,通过计算机程序模拟光线通过不匹配界面的情况,以更准确地预测实际成像效果。这两种方法相结合,可以更全面地理解折射率不匹配对MPM性能的影响,并可能为设计优化的光学系统提供指导。 论文还可能涵盖了如何校正这些像差,例如使用自适应光学元件,这些元件可以实时调整以补偿像差,或者通过优化沉浸介质的选择和使用特殊涂层来减少折射率差异。此外,作者可能还讨论了不同组织类型和不同深度下,像差的影响如何变化,以及如何根据这些变化来调整实验条件。 " Degradation of multiphoton signal and resolution when focusing through a planar interface with index mismatch: Analytical approximation and numerical investigation" 这篇论文深入研究了多光子显微镜中折射率不匹配对成像质量的关键影响,为改善深层组织成像提供了理论基础和潜在的解决方案。这一研究成果对于推进生物医学和生命科学领域的多光子显微镜技术具有重要意义。

用中文总结以下内容: A number of experimental and numerical investigations have been conducted to study the MBPP stack and wavy flow field characteristics with various designs [10,11]. T. Chu et al. conducted the durability test of a 10-kW MBPP fuel cell stack containing 30 cells under dynamic driving cycles and analyzed the performance degradation mechanism [12]. X. Li et al. studied the deformation behavior of the wavy flow channels with thin metallic sheet of 316 stainless steel from both experimental and simulation aspects [13]. J. Owejan et al. designed a PEMFC stack with anode straight flow channels and cathode wavy flow channels and studied the in situ water distributions with neutron radiograph [14]. T. Tsukamoto et al. simulated a full-scale MBPP fuel cell stack of 300 cm2 active area at high current densities and used the 3D model to analyze the in-plane and through-plane parameter distributions [15]. G. Zhang et al. developed a two-fluid 3D model of PEMFC to study the multi-phase and convection effects of wave-like flow channels which are symmetric between anode and cathode sides [16]. S. Saco et al. studied the scaled up PEMFC numerically and compared straight parallel, serpentine zig-zag and straight zig-zag flow channels cell with zig-zag flow field with a transient 3D numerical model to analyze the subfreezing temperature cold start operations [18]. P. Dong et al. introduced discontinuous S-shaped and crescent ribs into flow channels based on the concept of wavy flow field for optimized design and improved energy performance [19]. I. Anyanwu et al. investigated the two-phase flow in sinusoidal channel of different geometric configurations for PEMFC and analyzed the effects of key dimensions on the droplet removal in the flow channel [20]. Y. Peng et al. simulated 5-cell stacks with commercialized flow field designs, including Ballard-like straight flow field, Honda-like wavy flow field and Toyota-like 3D mesh flow field, to investigate their thermal management performance [21]. To note, the terms such as sinusoidal, zig-zag, wave-like and Sshaped flow channels in the aforementioned literatures are similar to the so called wavy flow channels in this paper with identical channel height for the entire flow field. The through-plane constructed wavy flow channels with periodically varied channel heights are beyond the scope of this paper [22,23].

2023-02-10 上传