MapReduce并行算法设计与应用解析
需积分: 34 106 浏览量
更新于2024-07-19
1
收藏 872KB PDF 举报
"基于MapReduce的并行算法设计的课件,涵盖了MapReduce的基本概念、字数统计、平均数计算和单词共现矩阵的计算等核心内容,由哈尔滨工业大学的王宏志教授讲解。"
MapReduce是一种由Google公司开发的分布式编程模型,用于处理和生成大规模数据集。它简化了在大型集群上编写并行计算程序的过程,使得开发者可以专注于核心的Map和Reduce函数,而无需关心底层的分布式细节。
**7.1 MapReduce概述**
MapReduce的核心思想是将复杂的数据处理任务分解为两个主要步骤:Map和Reduce。Map阶段将输入数据集拆分成多个小块,对每个数据块应用用户自定义的Map函数,生成中间结果。Reduce阶段则对Map产生的中间结果进行聚合,通过用户定义的Reduce函数整合信息,生成最终输出。
**7.2 字数统计**
字数统计是MapReduce的一个经典示例。在Map阶段,每个文档被分割成单词,Map函数接收单词和其出现的位置作为键值对,输出单词作为新的键,值为1表示出现一次。Reduce阶段将所有相同的单词键聚合在一起,累加对应的值,得到每个单词的总数。
**7.3 平均数计算**
计算大量数值的平均数可以通过MapReduce实现。Map阶段将每个数值作为键值对输入,输出键仍为数值,值设为1。Reduce阶段对相同键的数值求和,同时记录键的数量(即数值的个数),最后计算平均值时,总和除以数量。
**7.4 单词共现矩阵的计算**
在自然语言处理中,计算单词共现矩阵是常见的任务。Map阶段处理文本,找出每个单词及其上下文单词,生成键为单词对,值为1的中间结果。Reduce阶段则对相同的单词对求和,得到每个单词对的共现次数。
MapReduce模型还包括了`partition`和`combine`操作。`partition`根据key值将中间结果分配到不同的Reducer,确保相同key的value会被同一个Reducer处理。`combine`函数则在Reduce之前执行,局部聚合相同的key-value对,减少网络传输的数据量,提高效率。
在编程时,程序员需定义Map和Reduce函数,确保所有具有相同key的value会被聚集到一起。可选的`partition`函数用于决定如何在Reducer之间划分数据,通常依据key的哈希值来确定。
总结来说,MapReduce提供了一种简单、高效的处理大数据的方法,通过将复杂任务分解为并行的Map和Reduce操作,使得在大规模分布式系统中处理海量数据成为可能。这份课件深入浅出地介绍了MapReduce的基本原理和应用实例,对于理解和掌握分布式计算有着重要的价值。
2021-06-07 上传
2014-05-26 上传
2008-01-01 上传
2011-02-23 上传
2012-06-25 上传
2018-02-05 上传
2021-09-29 上传
天边龙一条
- 粉丝: 13
- 资源: 4
最新资源
- 全国江河水系图层shp文件包下载
- 点云二值化测试数据集的详细解读
- JDiskCat:跨平台开源磁盘目录工具
- 加密FS模块:实现动态文件加密的Node.js包
- 宠物小精灵记忆配对游戏:强化你的命名记忆
- React入门教程:创建React应用与脚本使用指南
- Linux和Unix文件标记解决方案:贝岭的matlab代码
- Unity射击游戏UI套件:支持C#与多种屏幕布局
- MapboxGL Draw自定义模式:高效切割多边形方法
- C语言课程设计:计算机程序编辑语言的应用与优势
- 吴恩达课程手写实现Python优化器和网络模型
- PFT_2019项目:ft_printf测试器的新版测试规范
- MySQL数据库备份Shell脚本使用指南
- Ohbug扩展实现屏幕录像功能
- Ember CLI 插件:ember-cli-i18n-lazy-lookup 实现高效国际化
- Wireshark网络调试工具:中文支持的网口发包与分析