二元Hermite插值研究:沿平面代数曲线的新理论与构造方法
需积分: 8 115 浏览量
更新于2024-08-08
收藏 988KB PDF 举报
"二元Hermite插值问题的研究,崔利宏,张志辉,李纬国,辽宁师范大学,代数曲线,几何结构,适定泛函组"
本文探讨的是二元Hermite插值问题,这是一个在数学和计算科学中重要的主题,特别是在计算机辅助几何设计、有限元方法和散乱数据插值领域。二元Hermite插值是指在二维空间R²中寻找一个多项式函数,该函数不仅在给定点上取到指定的值,而且在这些点处的导数值也匹配预设的值。这种插值方式对于构建平滑曲线尤其有用。
作者崔利宏、张志辉和李纬国提出了一种新的概念——沿平面代数曲线的Hermite插值适定泛函组和强H-基。代数曲线是数学中由一个或多个方程定义的平滑图形,而Hermite插值适定泛函组则是一组函数,它们能够确保在给定的代数曲线上实现Hermite插值。强H-基则是这个组的一个特定子集,具有更特殊的性质,可以更有效地处理插值问题。
在论文中,作者给出了代数曲线上的Hermite插值适定泛函组的相关理论和构造方法。这些理论和方法不仅解决了在特定曲线(如圆周曲线)上的插值问题,还扩展到了更一般的平面代数曲线。通过这种方式,他们扩展了之前由H.A. Hakopian、B. Bojanov和Yuan Xu等人在2002年和2003年的工作,进一步揭示了二元Hermite插值适定泛函组的几何结构和基本特性。
在预备知识部分,作者强调了光滑函数方法在各种科学和工程应用中的重要性,特别是插值多项式函数的存在性和唯一性。他们引用了Hakopian和Bojanov等人在圆周曲线上的工作作为背景,并表示他们的研究将这种方法推广到更复杂的曲线形态。
这篇论文为解决R²中的二元Hermite插值问题提供了新的工具和理论,这对于理解和构建基于代数曲线的平滑插值格式至关重要。通过对代数几何的运用,作者为实际问题的求解提供了更广泛的理论支持,这对于未来在计算机图形学、数值分析和数据处理等领域有着深远的影响。
点击了解资源详情
点击了解资源详情
点击了解资源详情
2021-05-06 上传
2022-07-14 上传
2022-07-14 上传
2022-07-15 上传
2021-10-02 上传
weixin_38610682
- 粉丝: 6
- 资源: 878
最新资源
- C语言数组操作:高度检查器编程实践
- 基于Swift开发的嘉定单车LBS iOS应用项目解析
- 钗头凤声乐表演的二度创作分析报告
- 分布式数据库特训营全套教程资料
- JavaScript开发者Robert Bindar的博客平台
- MATLAB投影寻踪代码教程及文件解压缩指南
- HTML5拖放实现的RPSLS游戏教程
- HT://Dig引擎接口,Ampoliros开源模块应用
- 全面探测服务器性能与PHP环境的iprober PHP探针v0.024
- 新版提醒应用v2:基于MongoDB的数据存储
- 《我的世界》东方大陆1.12.2材质包深度体验
- Hypercore Promisifier: JavaScript中的回调转换为Promise包装器
- 探索开源项目Artifice:Slyme脚本与技巧游戏
- Matlab机器人学习代码解析与笔记分享
- 查尔默斯大学计算物理作业HP2解析
- GitHub问题管理新工具:GIRA-crx插件介绍