A*寻路算法详解:从入门到精通

需积分: 0 4 下载量 79 浏览量 更新于2024-12-27 收藏 105KB DOC 举报
"这篇资源是关于游戏算法的经典整理,特别是关注于A*寻路算法的深入探讨。适合编程爱好者和游戏开发人员学习。" 在游戏开发中,算法扮演着至关重要的角色,它们使得游戏世界更加生动、智能且交互性强。其中,A* (A-Star) 寻路算法是一种广泛应用的路径寻找算法,尤其适用于游戏中的角色导航和自动路径规划。A* 算法以其高效性和准确性受到程序员的广泛赞誉。 A* 算法的核心思想是结合了最佳优先搜索(如Dijkstra算法)和启发式信息,通过评估节点的代价来寻找从起点到终点的最短路径。它引入了两个关键概念:**开放列表**和**关闭列表**。开放列表存放待评估的节点,而关闭列表则记录已经评估过的节点,避免重复计算。 在描述中提到,A* 算法的关键在于使用了**F值**,它是从起点到当前节点的实际代价G和从当前节点到目标的估计代价H的总和。F = G + H。G值表示已经走过的真实代价,H值则是使用启发式函数预测的剩余代价。启发式函数通常是曼哈顿距离或欧几里得距离,但必须是**一致的**,即对于所有节点,从它们到目标的代价放大或缩小相同的比例。 在实际应用中,A* 算法通常在网格环境中工作,将地图划分为小的可通行或不可通行的单元格。每个单元格被视为一个节点,通过它们之间的连接形成路径。不可通行的单元格(如墙壁)设置为障碍,阻止角色通过。角色从一个节点移动到相邻的节点,直到达到目标节点。 该资源提到了一个示例场景,角色需要从起点A移动到终点B,而中间存在障碍(墙)。A* 算法会计算每个节点的F值,并选择最小F值的节点进行扩展,直到找到目标节点。过程中,算法会不断地更新节点的状态,将其从开放列表转移到关闭列表。 资源中还提到,虽然A* 算法在理论上可能对初学者来说有些复杂,但作者通过简洁明快的解释和实例,帮助读者理解其基本原理。提供的C++和Blitz Basic的代码示例则可以帮助读者更好地理解和实现这一算法。 这篇资源是学习游戏开发中A*寻路算法的理想材料,通过理论与实践相结合的方式,引导读者掌握这一强大的路径规划工具。无论是为了提高游戏的智能化程度,还是优化寻路效率,A*算法都是游戏开发者不可或缺的知识点。
2008-11-19 上传
算法一:A*寻路初探 From GameDev.net 译者序:很久以前就知道了A*算法,但是从未认真读过相关的文章,也没有看过代码,只是脑子里有个模糊的概念。这次决定从头开始,研究一下这个被人推崇备至的简单方法,作为学习人工智能的开始。 这 篇文章非常知名,国内应该有不少人翻译过它,我没有查找,觉得翻译本身也是对自身英文水平的锻炼。经过努力,终于完成了文档,也明白的A*算法的原理。毫 无疑问,作者用形象的描述,简洁诙谐的语言由浅入深的讲述了这一神奇的算法,相信每个读过的人都会对此有所认识(如果没有,那就是偶的翻译太差了-- b)。 原文链接:http://www.gamedev.net/reference/articles/article2003.asp 以下是翻译的正文。(由于本人使用ultraedit编辑,所以没有对原文中的各种链接加以处理(除了图表),也是为了避免未经许可链接的嫌疑,有兴趣的读者可以参考原文。 会者不难,A*(念作A星)算法对初学者来说的确有些难度。 这篇文章并不试图对这个话题作权威的陈述。取而代之的是,它只是描述算法的原理,使你可以在进一步的阅读中理解其他相关的资料。 最后,这篇文章没有程序细节。你尽可以用任意的计算机程序语言实现它。如你所愿,我在文章的末尾包含了一个指向例子程序的链接。 压缩包包括C++和Blitz Basic两个语言的版本,如果你只是想看看它的运行效果,里面还包含了可执行文件。 我们正在提高自己。让我们从头开始。。。 序:搜索区域 假设有人想从A点移动到一墙之隔的B点,如下图,绿色的是起点A,红色是终点B,蓝色方块是中间的墙。 [图1] 你 首先注意到,搜索区域被我们划分成了方形网格。像这样,简化搜索区域,是寻路的第一步。这一方法把搜索区域简化成了一个二维数组。数组的每一个元素是网格 的一个方块,方块被标记为可通过的和不可通过的。路径被描述为从A到B我们经过的方块的集合。一旦路径被找到,我们的人就从一个方格的中心走向另一个,直 到到达目的地。 这些中点被称为“节点”。当你阅读其他的寻路资料时,你将经常会看到人们讨论节点。为什么不把他们描述为方格呢?因为有可 能你的路径被分割成其他不是方格的结构。他们完全可以是矩形,六角形,或者其他任意形状。节点能够被放置在形状的任意位置-可以在中心,或者沿着边界,或 其他什么地方。我们使用这种系统,无论如何,因为它是最简单的。 开始搜索 正如我们处理上图网格的方法,一旦搜索区域被转化为容易处理的节点,下一步就是去引导一次找到最短路径的搜索。在A*寻路算法中,我们通过从点A开始,检查相邻方格的方式,向外扩展直到找到目标。 我们做如下操作开始搜索: 1,从点A开始,并且把它作为待处理点存入一个“开启列表”。开启列表就像一张购物清单。尽管现在列表里只有一个元素,但以后就会多起来。你的路径可能会通过它包含的方格,也可能不会。基本上,这是一个待检查方格的列表。 2,寻找起点周围所有可到达或者可通过的方格,跳过有墙,水,或其他无法通过地形的方格。也把他们加入开启列表。为所有这些方格保存点A作为“父方格”。当我们想描述路径的时候,父方格的资料是十分重要的。后面会解释它的具体用途。 3,从开启列表中删除点A,把它加入到一个“关闭列表”,列表中保存所有不需要再次检查的方格。 在这一点,你应该形成如图的结构。在图中,暗绿色方格是你起始方格的中心。它被用浅蓝色描边,以表示它被加入到关闭列表中了。所有的相邻格现在都在开启列表中,它们被用浅绿色描边。每个方格都有一个灰色指针反指他们的父方格,也就是开始的方格。 [图2] 接着,我们选择开启列表中的临近方格,大致重复前面的过程,如下。但是,哪个方格是我们要选择的呢?是那个F值最低的。 路径评分 选择路径中经过哪个方格的关键是下面这个等式: F = G + H 这里: * G = 从起点A,沿着产生的路径,移动到网格上指定方格的移动耗费。 * H = 从网格上那个方格移动到终点B的预估移动耗费。这经常被称为启发式的,可能会让你有点迷惑。这样叫的原因是因为它只是个猜测。我们没办法事先知道路径的长 度,因为路上可能存在各种障碍(墙,水,等等)。虽然本文只提供了一种计算H的方法,但是你可以在网上找到很多其他的方法。 我们的路径是通过反复遍历开启列表并且选择具有最低F值的方格来生成的。文章将对这个过程做更详细的描述。首先,我们更深入的看看如何计算这个方程。 正 如上面所说,G表示沿路径从起点到当前点的移动耗费。在这个例子里,我们令水平或者垂直移动的耗费为10,对角线方向耗费为14。我们取这些值是因为沿对 角线的距离是沿水平或垂直移动耗费的的根号2(别怕),或者约1.414倍。为了简化,我们用10和14近似。比例基本正确,同时我们避免了求根运算和小 数。这不是只因为我们怕麻烦或者不喜欢数学。使用这样的整数对计算机来说也更快捷。你不就就会发现,如果你不使用这些简化方法,寻路会变得很慢。 既然我们在计算沿特定路径通往某个方格的G值,求值的方法就是取它父节点的G值,然后依照它相对父节点是对角线方向或者直角方向(非对角线),分别增加14和10。例子中这个方法的需求会变得更多,因为我们从起点方格以外获取了不止一个方格。 H 值可以用不同的方法估算。我们这里使用的方法被称为曼哈顿方法,它计算从当前格到目的格之间水平和垂直的方格的数量总和,忽略对角线方向。然后把结果乘以 10。这被成为曼哈顿方法是因为它看起来像计算城市中从一个地方到另外一个地方的街区数,在那里你不能沿对角线方向穿过街区。很重要的一点,我们忽略了一 切障碍物。这是对剩余距离的一个估算,而非实际值,这也是这一方法被称为启发式的原因。想知道更多?你可以在这里找到方程和额外的注解。 F的值是G和H的和。第一步搜索的结果可以在下面的图表中看到。F,G和H的评分被写在每个方格里。正如在紧挨起始格右侧的方格所表示的,F被打印在左上角,G在左下角,H则在右下角。 [图3] 现在我们来看看这些方格。写字母的方格里,G = 10。这是因为它只在水平方向偏离起始格一个格距。紧邻起始格的上方,下方和左边的方格的G值都等于10。对角线方向的G值是14。 H 值通过求解到红色目标格的曼哈顿距离得到,其中只在水平和垂直方向移动,并且忽略中间的墙。用这种方法,起点右侧紧邻的方格离红色方格有3格距离,H值就 是30。这块方格上方的方格有4格距离(记住,只能在水平和垂直方向移动),H值是40。你大致应该知道如何计算其他方格的H值了~。 每个格子的F值,还是简单的由G和H相加得到 继续搜索 为了继续搜索,我们简单的从开启列表中选择F值最低的方格。然后,对选中的方格做如下处理: 4,把它从开启列表中删除,然后添加到关闭列表中。 5,检查所有相邻格子。跳过那些已经在关闭列表中的或者不可通过的(有墙,水的地形,或者其他无法通过的地形),把他们添加进开启列表,如果他们还不在里面的话。把选中的方格作为新的方格的父节点。 6,如果某个相邻格已经在开启列表里了,检查现在的这条路径是否更好。换句话说,检查如果我们用新的路径到达它的话,G值是否会更低一些。如果不是,那就什么都不做。 另一方面,如果新的G值更低,那就把相邻方格的父节点改为目前选中的方格(在上面的图表中,把箭头的方向改为指向这个方格)。最后,重新计算F和G的值。如果这看起来不够清晰,你可以看下面的图示。 好了,让我们看看它是怎么运作的。我们最初的9格方格中,在起点被切换到关闭列表中后,还剩8格留在开启列表中。这里面,F值最低的那个是起始格右侧紧邻的格子,它的F值是40。因此我们选择这一格作为下一个要处理的方格。在紧随的图中,它被用蓝色突出显示。 [图4] 首先,我们把它从开启列表中取出,放入关闭列表(这就是他被蓝色突出显示的原因)。然后我们检查相邻的格子。哦,右侧的格子是墙,所以我们略过。左侧的格子是起始格。它在关闭列表里,所以我们也跳过它。 其 他4格已经在开启列表里了,于是我们检查G值来判定,如果通过这一格到达那里,路径是否更好。我们来看选中格子下面的方格。它的G值是14。如果我们从当 前格移动到那里,G值就会等于20(到达当前格的G值是10,移动到上面的格子将使得G值增加10)。因为G值20大于14,所以这不是更好的路径。如果 你看图,就能理解。与其通过先水平移动一格,再垂直移动一格,还不如直接沿对角线方向移动一格来得简单。 当我们对已经存在于开启列表中的4个临近格重复这一过程的时候,我们发现没有一条路径可以通过使用当前格子得到改善,所以我们不做任何改变。既然我们已经检查过了所有邻近格,那么就可以移动到下一格了。 于 是我们检索开启列表,现在里面只有7格了,我们仍然选择其中F值最低的。有趣的是,这次,有两个格子的数值都是54。我们如何选择?这并不麻烦。从速度上 考虑,选择最后添加进列表的格子会更快捷。这种导致了寻路过程中,在靠近目标的时候,优先使用新找到的格子的偏好。但这无关紧要。(对相同数值的不同对 待,导致不同版本的A*算法找到等长的不同路径。) 那我们就选择起始格右下方的格子,如图。 [图5]