四步法相机标定原理与MATLAB工具箱应用
需积分: 35 159 浏览量
更新于2024-09-18
收藏 124KB PDF 举报
"这篇论文详细介绍了MATLAB标定工具箱所采用的四步相机校准方法,强调了从图像中提取控制点、模型拟合、图像校正等关键步骤,并提出了对圆特征引起的畸变进行补偿的方法,以及用于精确校正扭曲图像坐标的实用逆模型。"
在计算机视觉和机器人学领域,MATLAB标定工具箱是进行相机标定的常用工具。相机标定是确定相机参数的过程,这些参数描述了三维参考坐标如何映射到二维图像坐标。这篇由Janne Heikkilä和Olli Silvén撰写的论文深入探讨了这一过程的理论基础。
传统的相机标定通常涉及两个主要步骤:一是从图像中提取控制点,二是将这些点用于模型拟合,从而估计相机的内参和外参。然而,Heikkilä和Silvén指出,整个标定过程中的其他阶段,如图像校正和误差来源,同样至关重要但往往被忽视。
他们提出了一种扩展的四步校准流程:
1. **控制点提取**:这一步涉及到在多个视角下识别和标记图像中的特征点,通常是棋盘格图案的角点,作为三维空间中的已知位置。
2. **模型拟合**:使用这些控制点来估计相机的内参数(如焦距、主点位置)和外参数(如旋转和平移),这是通过最小化图像坐标与预期坐标之间的残差来实现的。
3. **补偿圆形特征引起的畸变**:相机的光学系统可能会导致图像畸变,尤其是在使用具有圆形特征的标定对象时。此步骤通过额外的计算来校正这种畸变。
4. **图像坐标校正**:论文中介绍了一个经验性的逆模型,它能精确地修正图像坐标,以减少由于畸变导致的不准确。
这个四步法不仅考虑了模型拟合,而且强化了前期处理和后期处理的重要性,提高了标定的准确性和鲁棒性。这对于自动驾驶、无人机导航、机器视觉等应用至关重要,因为这些系统依赖于高精度的相机标定来理解周围环境。
通过理解和应用这篇论文中的理论,用户可以更好地理解MATLAB标定工具箱的工作原理,优化其标定过程,提高算法的性能,从而在实际应用中获得更准确的图像映射和物体检测结果。
1985 浏览量
164 浏览量
553 浏览量
203 浏览量
479 浏览量
111 浏览量
124 浏览量
2023-07-01 上传
2024-04-20 上传

tom_cang
- 粉丝: 0
最新资源
- Delphi纯源码QR二维码生成器支持中英文
- 罗克韦尔CENTERLINE 2500智能马达控制中心的特性与功能
- ARIMA模型预测股票价格准确性分析与未来工作展望
- ECharts图表应用与区间查询功能展示
- Java+EE技术面试题解析与源码工具应用
- 探索SVG在WebGIS开发中的应用与源码解析
- JAVA常用算法项目:LeetCode分类刷题指南
- Desech Studio中Angular插件的使用与测试教程
- 51单片机走马灯效果的Proteus仿真教程
- JavaScript塔围攻1第32章核心解析
- 罗克韦尔可视化解决方案选型指南全面解析
- LeetCode刷题指南:按语言分类的编程题库
- Kali Linux环境下WiFi攻击与防护技术分析
- pickadate.js-gh-pages压缩包使用教程
- MV C++ 14.0新版本特性及功能介绍
- Bootstrap网页自定义选项查询字符串插件介绍