构建企业智能:维度建模的艺术与优化

需积分: 9 5 下载量 110 浏览量 更新于2024-07-30 收藏 8.44MB PDF 举报
在商业计算和信息技术领域的发展历程中,20世纪80年代的主要关注点在于业务流程的执行,而到了90年代,重点转向了对业务的分析。进入90年代末期及以后,随着新市场路径的探索和电子商务的兴起,企业开始利用网络技术拓展业务。在这个背景下,"维度建模"作为关键的IT工具,在商业智能环境中扮演着日益重要的角色。 维度建模是一种数据建模方法论,它在设计数据库架构时,将数据组织成易于理解和分析的形式。这种方法强调了数据的一致性和可扩展性,有助于提高查询性能,同时保持足够的灵活性以适应企业的成长和变化。在OLTP(在线事务处理)的时代,如IBM的DB2 Universal Database Enterprise Server Edition和Rational Data Architect等技术平台上,E-R模型(实体关系模型),特别是在第三范式(3NF)的指导下,被广泛用于创建数据库结构。 在商业智能环境中,维度建模的应用主要包括以下几点: 1. **数据访问和分析的便利**:通过构建多维数据集,可以更直观地展示和分析数据,使得决策者能够快速获取所需的信息,支持深入的数据挖掘和洞察。 2. **灵活应对增长与变化**:维度模型的设计允许数据结构随着业务需求的变化进行调整,不会因为数据量的增长或新的业务功能引入而变得复杂或过时。 3. **优化查询性能**:通过预计算、事实表和维度表的分离,维度建模减少了数据冗余和查询复杂度,从而提高了数据查询的速度和效率。 4. **支持大规模企业扩张**:随着公司规模扩大,传统的E/R模型可能无法满足复杂的查询需求,维度建模通过提供高效的数据存储和查询机制,确保了大型企业处理海量数据的能力。 5. **遵循最佳实践**:该资源指南,如IBM的《维度建模:在商业智能环境中的应用》一书,由Chuck Ballard、Daniel M. Farrell、Amit Gupta、Carlos Mazuela和Stanislav Vohnik等人编撰,提供了一套全面的方法和最佳实践,帮助读者更好地理解和实施维度建模。 总结来说,维度建模是现代IT架构中不可或缺的一部分,它对于推动企业向数据驱动决策转变,实现更有效的信息管理,以及提升业务智能应用的性能和灵活性起到了关键作用。
2011-07-24 上传
Guanghui Wang, Q.M. Jonathan Wu, "Guide to Three Dimensional Structure and Motion Factorization" S rin er | 2010-09-17 | ISBN: 0857290452 | 212 pages | PDF | 8,6 MB The problem of structure and motion recovery from image sequences is an important theme in computer vision. Considerable progress has been made in this field during the past two decades, resulting in successful applications in robot navigation, augmented reality, industrial inspection, medical image analysis, and digital entertainment, among other areas. However, many of these methods work only for rigid objects and static scenes. The study of non-rigid structure from motion is not only of academic significance, but also has important practical applications in real-world, nonrigid or dynamic scenarios, such as human facial expressions and moving vehicles. This practical guide/reference provides a comprehensive overview of Euclidean structure and motion recovery, with a specific focus on factorization-based algorithms. The book discusses the latest research in this field, including the extension of the factorization algorithm to recover the structure of non-rigid objects, and presents some new algorithms developed by the authors. Readers require no significant knowledge of computer vision, although some background on projective geometry and matrix computation would be beneficial. Topics and features: presents the first systematic study of structure and motion recovery of both rigid and non-rigid objects from images sequences; discusses in depth the theory, techniques, and applications of rigid and non-rigid factorization methods in three dimensional computer vision; examines numerous factorization algorithms, covering affine, perspective and quasi-perspective projection models; provides appendices describing the mathematical principles behind projective geometry, matrix decomposition, least squares, and nonlinear estimation techniques; includes chapter-ending review questions, and a glossary of terms used in the book. This unique text offers practical guidance in real applications and implementations of 3D modeling systems for practitioners in computer vision and pattern recognition, as well as serving as an invaluable source of new algorithms and methodologies for structure and motion recovery for graduate students and researchers.