时变延迟T-S模糊系统的延迟依赖稳定控制器设计

版权申诉
0 下载量 52 浏览量 更新于2024-11-14 收藏 16KB ZIP 举报
资源摘要信息: 本文研究了具有时变延迟的T-S模糊系统的时延依赖状态反馈稳定模糊控制器的设计方法。该方法是一个重要工作,因为它建立了一种新方式,可以同时减少保守性和计算努力。本文提出的时延依赖稳定条件以涉及单一参数λ>0的线性矩阵不等式(LMIs)的形式呈现。最后,两个示例数值上显示了我们的结果比现有的结果具有较小的保守性。 关键词包括: delay-dependent t-s fuzzy (时延依赖T-S模糊), t-s_with_time_delay (具有时间延迟的T-S), time-dependent_lmis (时延依赖LMIs)。 详细说明如下: 1. T-S模糊系统(Takagi-Sugeno Fuzzy Systems) T-S模糊系统是一种用于处理复杂非线性系统的模糊建模和控制方法。它通过模糊逻辑将非线性系统分解为一系列线性子系统,然后通过模糊规则集进行整合。这种系统的优点是能够以更接近物理过程的方式来表示复杂的动态系统,同时保持了线性系统的解析便利性。 2. 时变延迟(Time-Varying Delay) 在控制系统中,时变延迟指的是系统状态或控制输入与输出之间的延迟时间不是固定的,而是随时间变化的。这种延迟可能由于物理传输延迟、数据处理延迟等原因产生,并且在控制系统的设计与分析中是一个需要特别关注的问题。延迟的存在可能会对系统的稳定性造成负面影响。 3. 状态反馈稳定模糊控制器(State Feedback Stabilizing Fuzzy Controllers) 状态反馈控制器是一种常见的控制策略,通过反馈系统当前状态来设计控制器,以达到系统稳定的目的。当结合模糊控制技术时,状态反馈稳定模糊控制器可以有效地处理系统中的不确定性和非线性特性。模糊控制器的参数通常是通过模糊规则和隶属函数定义的,它们能够根据不同的系统状态灵活调整控制行为。 4. 时延依赖设计(Delay-Dependent Design) 传统的控制设计方法往往假设系统延迟是未知的,即不依赖于延迟的大小。然而,时延依赖设计方法则考虑了延迟的具体值,并将延迟纳入系统模型中。这种设计方法可以提供比不考虑延迟更精确的系统性能保证,并且可以针对具体的延迟情况优化控制参数,以减少系统保守性,提升系统的性能。 5. 线性矩阵不等式(Linear Matrix Inequalities, LMIs) 线性矩阵不等式是一种用于描述系统稳定性和控制问题中性能指标的方法。在控制系统中,许多设计问题可以转化为求解LMIs的问题。LMIs涉及线性矩阵的不等式约束,可以通过数值方法高效求解。LMIs在模糊控制、鲁棒控制以及各种优化问题中有着广泛的应用。 6. 计算努力(Computational Efforts) 在控制系统设计中,计算努力指代为实现控制算法设计所需的计算资源和时间。减少计算努力意味着寻求更加高效的算法或方法,以降低对硬件的要求和运行时间,提高实际应用的可行性。 7. 保守性(Conservatism) 保守性在控制理论中指的是设计方法为了确保系统的稳定性和鲁棒性而采取的安全余量。如果设计方法过于保守,可能会导致系统性能下降,如响应速度变慢或控制精度降低。相反,设计方法的改进,如本文中提出的方法,能够减少保守性,提高系统性能,同时确保稳定性和鲁棒性。 8. 数值示例(Numerical Examples) 通过数值示例,研究者可以直观地展示其研究成果的有效性。示例通常包括具体的数学模型和参数设置,通过计算机仿真来验证理论分析的正确性和控制策略的优越性。在本论文中,通过两个示例,作者具体展示了所提方法在减少保守性方面的优势。 以上知识点涵盖了本文档的主要研究内容和背景知识,为理解该论文的研究成果及其在控制理论中的应用提供了详细的背景信息。