Apache Spark深度解析:大数据处理简化指南

需积分: 0 4 下载量 179 浏览量 更新于2024-07-18 收藏 7.92MB PDF 举报
"Spark: The Definitive Guide: Big Data Processing Made Simple" 是一本由Apache Spark的创建者Bill Chambers和Matei Zaharia撰写的全面指南,旨在帮助读者理解和使用Spark进行大数据处理。这本书重点关注Spark 2.0的新特性和改进,适合开发者和系统管理员阅读。 在书中,作者深入浅出地介绍了Spark的基础操作和核心API,包括DataFrame、SQL和Dataset。DataFrame和Dataset是Spark 2.0引入的重要概念,它们提供了结构化的数据处理能力,使得数据处理更加直观和高效。读者可以通过实际案例学习如何使用这些API进行数据操作。 Spark的低级API,如Resilient Distributed Datasets (RDDs),也在书中进行了详细阐述。RDD是Spark的基础构建块,它提供了容错性并支持并行计算。此外,书中还探讨了如何执行SQL查询以及DataFrame的操作,帮助读者理解Spark的查询执行机制。 对于系统管理员,本书提供了关于监控、调优和调试Spark集群和应用程序的实用技巧。这部分内容对于确保Spark集群的稳定运行和性能优化至关重要。同时,书中的机器学习章节介绍了如何利用Spark的MLlib库实现大规模机器学习任务,涵盖了多种机器学习算法和应用场景。 Spark的生态系统也被广泛讨论,包括SparkR(Spark的R语言接口)和图形分析功能。SparkR使得R语言用户可以方便地利用Spark处理大规模数据,而图形分析部分则展示了Spark在处理复杂网络数据和图算法上的能力。 最后,书中详细讲解了Spark的部署策略,不仅覆盖了本地部署,还包括在云端运行Spark的实践指导。这部分内容对于那些希望在不同环境中部署和管理Spark集群的读者非常有价值。 总而言之,"Spark: The Definitive Guide" 是一本全面且深入的Spark参考书籍,无论你是初学者还是有经验的开发人员,都能从中获得宝贵的见解和实践经验,从而更好地驾驭大数据处理的世界。
2018-03-26 上传
Welcome to this first edition of Spark: The Definitive Guide! We are excited to bring you the most complete resource on Apache Spark today, focusing especially on the new generation of Spark APIs introduced in Spark 2.0. Apache Spark is currently one of the most popular systems for large-scale data processing, with APIs in multiple programming languages and a wealth of built-in and third-party libraries. Although the project has existed for multiple years—first as a research project started at UC Berkeley in 2009, then at the Apache Software Foundation since 2013—the open source community is continuing to build more powerful APIs and high-level libraries over Spark, so there is still a lot to write about the project. We decided to write this book for two reasons. First, we wanted to present the most comprehensive book on Apache Spark, covering all of the fundamental use cases with easy-to-run examples. Second, we especially wanted to explore the higher-level “structured” APIs that were finalized in Apache Spark 2.0—namely DataFrames, Datasets, Spark SQL, and Structured Streaming—which older books on Spark don’t always include. We hope this book gives you a solid foundation to write modern Apache Spark applications using all the available tools in the project. In this preface, we’ll tell you a little bit about our background, and explain who this book is for and how we have organized the material. We also want to thank the numerous people who helped edit and review this book, without whom it would not have been possible.