2014斯坦福大学机器学习第13讲:无监督学习与K-means聚类

版权申诉
0 下载量 131 浏览量 更新于2024-06-26 收藏 2.17MB PDF 举报
在2014年的斯坦福大学机器学习课程中,Lecture13主要探讨了无监督学习中的聚类方法,特别是K-均值算法。这一部分的内容深入介绍了聚类作为机器学习的一种重要技术,它属于无监督学习范畴,旨在对数据进行自动分类,无需事先提供标签或类别信息。 首先,聚类的目标是将数据集中的对象根据其内在结构或相似性组织成不同的组,这些组称为簇。在这个讲座中,Andrew Ng教授给出了一个直观的引入,强调了无监督学习与监督学习的区别。监督学习依赖于标记的数据集来训练模型,而聚类则是通过分析数据本身的特征来发现潜在的模式。 对于K-均值算法,它是聚类中最常用的方法之一。该算法的基本步骤包括: 1. 初始化:确定簇的数量(K值),即预先设定的簇中心点数目。这通常是随机选择的,以保证公平性。 2. 迭代过程:在每一轮迭代中,每个数据点被分配到与其最近的簇中心(当前估计的聚类中心)所属的簇。这个过程被称为“分配”。 3. 更新中心:计算每个簇中所有数据点的均值,用这个新的均值更新簇中心。这是通过重新分配后的数据点来优化簇的中心位置。 4. 重复上述步骤直到达到预设的停止条件,如达到最大迭代次数或者簇中心不再发生变化。 应用方面,K-均值算法广泛应用于多个领域: - 社交网络分析:通过聚类算法可以识别用户群体、社区或者兴趣小组,帮助理解用户行为和网络结构。 - 天文学数据分析:例如,分析星系、恒星等天体的分布,或研究宇宙射线的数据,K-均值可以帮助发现潜在的模式和结构。 - 市场分割:企业可以利用聚类来划分消费者群体,以便个性化营销策略或产品设计。 - 图像处理:图像聚类可用于物体识别、图像分类或者异常检测等任务。 - 大规模数据挖掘:在没有明确标签的情况下,聚类可以帮助发现数据集中的潜在规律。 在教学过程中,Andrew Ng教授可能还讲解了K-均值算法的局限性,比如对初始簇中心的选择敏感,以及对于非凸形状的簇效果不佳。然而,尽管有这些限制,K-均值由于其简单性和高效性,仍然是数据科学中一个不可或缺的基础工具。