深度学习驱动的大规模天线阵列混合波束赋形技术探索
184 浏览量
更新于2024-08-29
2
收藏 372KB PDF 举报
"这篇论文探讨了基于深度学习的大规模天线阵列混合波束赋形设计,这是一种在无线通信领域中解决毫米波路径损耗和降低系统开销的有效方法。混合波束赋形(HBF)结合了模拟和数字预编码技术,通过深度学习算法优化其性能。论文详细介绍了系统的模型,包括关键参数如vRF(模拟预编码向量)和vD(数字预编码权重),并提供了系统的频谱效率公式。"
在无线通信领域,尤其是大规模多输入多输出(MIMO)系统中,天线阵列的设计对于提高传输效率和克服环境干扰至关重要。传统的波束赋形方法通常依赖于数学优化技术,如凸优化和矩阵理论。然而,随着深度学习的兴起,研究者开始探索如何利用神经网络(NN)来解决这类问题,以期实现更高效、自适应的波束形成策略。
深度学习在混合波束赋形中的应用主要体现在两个方面:一是通过训练数据集学习信道特性和系统行为,生成近似最优的预编码矩阵;二是通过端到端的学习过程,简化复杂的信号处理步骤,减少计算复杂度。论文提出的两阶段设计方法可能包括一个用于学习信道特性并生成初步预编码方案的阶段,以及一个用于微调这些方案以优化性能的阶段。
在系统模型部分,论文考虑的是下行窄带多输入单输出(MISO)系统,其中HBF架构被用于提升传输效率。信道矩阵h描述了发射端和接收端之间的无线传播环境,而vRF和vD分别代表模拟和数字预编码向量,它们共同决定了信号的传输方向和强度。频谱效率(SE)是衡量系统性能的关键指标,由发射功率、信道条件和预编码策略共同决定。
论文的目标是最大化SE,同时满足功率约束。通过深度学习方法,可以学习到在各种信道条件下的最佳或接近最佳的vRF和vD组合,从而提高系统的整体性能。这种方法的优点在于能够自动适应不断变化的无线环境,而无需每次调整都进行复杂的数学优化。
仿真性能部分可能会展示深度学习方法相对于传统优化技术在不同场景下的表现,比如在信道快衰落或慢衰落条件下的性能增益,以及在有限计算资源下的适应性。最后,结论部分会总结研究的主要发现,强调深度学习在HBF设计中的潜力,并可能提出未来的研究方向,如进一步提高学习效率、减少数据需求或者优化硬件实现。
这篇论文深入研究了深度学习在大规模天线阵列混合波束赋形设计中的应用,为无线通信领域的创新提供了新的思路和方法。通过这种方式,可以期待在未来实现更加智能、高效的无线通信系统。
419 浏览量
375 浏览量
198 浏览量
865 浏览量
266 浏览量
2243 浏览量
107 浏览量
weixin_38553478
- 粉丝: 7
- 资源: 923
最新资源
- p3270:一个用于控制远程IBM主机的python库
- magic-iswbm-com-zh-latest.zip
- deeplearning-js:JavaScript中的深度学习框架
- 易语言控制台时钟源码.zip
- 完整的AXURE原型系列1-6季的全部作品rp源文件
- RC4-Cipher:CSharp中的RC4算法
- 测试
- 威客互动主机管理系统 v1.3.0.5
- metrics-js:一个向Graphite等聚合器提供数据点信息(度量和时间序列)的报告框架
- Kubernetes的声明式连续部署。-Golang开发
- IsEarthStillWarming.com::fire:全球变暖信息和数据
- Ajedrez-开源
- 社区:Rust社区的临时在线聚会。 欢迎所有人! :globe_showing_Americas::rainbow::victory_hand:
- Algo-ScriptML:Scratch的机器学习算法脚本。 机器学习模型和算法的实现只使用NumPy,重点是可访问性。 旨在涵盖从基础到高级的所有内容
- 支持Google的协议缓冲区-Golang开发
- 手写体数字识别界面程序.rar_图片数字识别_手写数字识别_手写识别_模糊识别_识别图片数字