MATLAB实现SVM分类:代码详解与示例
需积分: 1 4 浏览量
更新于2024-08-03
收藏 5KB TXT 举报
"该资源提供了一段MATLAB代码,用于实现支持向量机(SVM)并进行预测。代码包括了训练数据的拉格朗日乘子、测试样本的处理以及核函数的计算方法。"
在机器学习领域,支持向量机(Support Vector Machine,SVM)是一种广泛应用的分类和回归算法。它通过构建一个超平面来将不同类别的数据分隔开,最大化类别之间的间隔。MATLAB作为一种强大的数值计算环境,提供了对SVM的支持。
在给出的MATLAB代码中,`svm.a`表示拉格朗日乘子,这是SVM优化过程中得到的参数,用于确定哪些样本是支持向量。拉格朗日乘子`a`大于一个极小的阈值(如`epsilon=1e-8`)的样本被认为是支持向量。这部分代码筛选出这些关键样本,并用红色圆点在二维平面上进行可视化。
`Xt`是测试样本,是一个n×d矩阵,其中n是样本数量,d是样本的特征维度。这部分代码用于处理新的测试数据,以便进行预测。
`C_SVC_Sim`函数是SVM的预测函数,它接收已训练好的SVM模型(svm)和测试样本矩阵(Xt),返回预测结果`Yd`。`Yd`是一个n×1矩阵,每个元素的值为+1或-1,表示对每个测试样本的分类结果。
代码还涉及到核函数的计算,这是SVM中的一个重要概念,允许非线性决策边界。`CalcKernel`函数负责计算不同的核,如线性核、多项式核、高斯核(RBF)和双曲正切核。用户可以根据需求设置核函数的类型、度数、偏移量、宽度等参数。
例如,线性核('linear')简单地计算两个样本的内积;多项式核('poly')是基于内积的幂次;高斯核('gauss',也称为径向基函数RBF)使用高斯函数来衡量两个样本之间的相似度,其宽度由`width`参数决定;双曲正切核('tanh')则使用双曲正切函数,其斜率由`gamma`参数控制。
通过这些细节,我们可以看出这段代码实现了SVM的基本流程,包括模型训练、测试样本处理和预测,以及灵活的核函数选择。这对于理解和应用SVM进行分类任务非常有帮助。
1824 浏览量
993 浏览量
点击了解资源详情
2023-04-04 上传
1140 浏览量
230 浏览量
103 浏览量
2024-09-27 上传
2023-04-04 上传

runqu
- 粉丝: 2921
最新资源
- C++课程作业全集:深入掌握编程技能
- Unity游戏开发必备——LitJson插件使用指南
- 绿色版图标提取器:快速提取EXE/DLL图标
- Android搜索器实现-简约炫酷的SearchableSpinner
- 飞思智能车用两路IR2104S驱动电路设计与测试
- Android图表绘制简易教程与hellochart应用
- HWP2007viewer:便捷的韩国文档编辑软件查看器
- 创新设计:防丢失笔帽的笔具技术方案
- 老朽痴拙汉化版FrontEnd Plus 2.03:JAVA反编译利器
- 网络压缩项目:探索高效信息编码新方法
- Combuilder:Joomla组件开发的命令行神器
- 易语言实现多参数线程启动技巧分享
- Hishop网店助理v1.6.2:本地管理与平台互通神器
- MonoGame案例解析:构建单人游戏的C#之旅
- 网上商城系统实现:JSP+Servlet+JavaBean源码
- TCPView3.05:网络连接状态监控利器