MATLAB实现SVM分类:代码详解与示例
需积分: 1 85 浏览量
更新于2024-08-03
收藏 5KB TXT 举报
"该资源提供了一段MATLAB代码,用于实现支持向量机(SVM)并进行预测。代码包括了训练数据的拉格朗日乘子、测试样本的处理以及核函数的计算方法。"
在机器学习领域,支持向量机(Support Vector Machine,SVM)是一种广泛应用的分类和回归算法。它通过构建一个超平面来将不同类别的数据分隔开,最大化类别之间的间隔。MATLAB作为一种强大的数值计算环境,提供了对SVM的支持。
在给出的MATLAB代码中,`svm.a`表示拉格朗日乘子,这是SVM优化过程中得到的参数,用于确定哪些样本是支持向量。拉格朗日乘子`a`大于一个极小的阈值(如`epsilon=1e-8`)的样本被认为是支持向量。这部分代码筛选出这些关键样本,并用红色圆点在二维平面上进行可视化。
`Xt`是测试样本,是一个n×d矩阵,其中n是样本数量,d是样本的特征维度。这部分代码用于处理新的测试数据,以便进行预测。
`C_SVC_Sim`函数是SVM的预测函数,它接收已训练好的SVM模型(svm)和测试样本矩阵(Xt),返回预测结果`Yd`。`Yd`是一个n×1矩阵,每个元素的值为+1或-1,表示对每个测试样本的分类结果。
代码还涉及到核函数的计算,这是SVM中的一个重要概念,允许非线性决策边界。`CalcKernel`函数负责计算不同的核,如线性核、多项式核、高斯核(RBF)和双曲正切核。用户可以根据需求设置核函数的类型、度数、偏移量、宽度等参数。
例如,线性核('linear')简单地计算两个样本的内积;多项式核('poly')是基于内积的幂次;高斯核('gauss',也称为径向基函数RBF)使用高斯函数来衡量两个样本之间的相似度,其宽度由`width`参数决定;双曲正切核('tanh')则使用双曲正切函数,其斜率由`gamma`参数控制。
通过这些细节,我们可以看出这段代码实现了SVM的基本流程,包括模型训练、测试样本处理和预测,以及灵活的核函数选择。这对于理解和应用SVM进行分类任务非常有帮助。
1852 浏览量
1001 浏览量
点击了解资源详情
2023-04-04 上传
1149 浏览量
231 浏览量
2024-09-27 上传
2023-04-04 上传
2024-09-10 上传

runqu
- 粉丝: 2921
最新资源
- Java源码实战经典:随书源码解析
- Java PDF生成器iText开源jar包集合
- Booth乘法器测试平台设计与实现
- 极简中国风PPT模板:水墨墨点创意设计
- 掌握openssh-5.9:远程Linux控制的核心工具
- Django 1.8.4:2015年最新版本的特性解析
- C# WinFrom图片放大镜控件的实现及使用方法
- 易语言模块V1.4:追梦_论坛官方增强版
- Yelp评论情绪分析方法与实践
- 年终工作总结水墨中国风PPT模板精粹
- 深入探讨雷达声呐信号处理与最优阵列技术
- JQuery实现多种网页特效指南
- C#实现扑克牌类及其洗牌功能的封装与调用
- Win7系统摄像头显示补丁快速指南
- jQuery+Bootstrap分页插件的四种创意效果展示
- 掌握karma-babel-preprocessor:实现ES6即时编译