"基于多尺度YOLOv5的高效实时交通灯检测算法优化研究"
版权申诉
45 浏览量
更新于2024-04-04
收藏 1.6MB DOCX 举报
Traffic light detection is a crucial task in the field of autonomous driving, as it directly impacts the safety of vehicles on the road. The difficulty in detecting traffic lights due to their small scale and complex environmental conditions has prompted the development of a multi-scale YOLOv5 traffic light detection algorithm. This approach involves utilizing a combination of data augmentation techniques to enhance the complexity of the model input, as well as training the model at multiple scales instead of a fixed scale to improve its learning capabilities. Additionally, a multi-scale feature fusion network is constructed to merge information from downsampled scales of 4x, 8x, 16x, and 32x, creating a multi-scale detection layer. To enhance the feature fusion capability, long-range skip connections are introduced to transfer information between different levels, significantly improving the model's ability to detect small objects. Experimental results demonstrate that the improved YOLOv5 algorithm achieves a detection speed of up to 9.5ms and an mAP of 99.8% on the collected dataset, representing a 17% improvement over the original YOLOv5 model. Furthermore, on the Bosch dataset, the mAP increases by 6.5%, enabling real-time and high-precision traffic light detection.
2022-11-29 上传
2023-11-01 上传
2023-05-08 上传
2024-04-18 上传
2022-01-03 上传
2022-12-15 上传
2023-04-17 上传
罗伯特之技术屋
- 粉丝: 4436
- 资源: 1万+
最新资源
- 高清艺术文字图标资源,PNG和ICO格式免费下载
- mui框架HTML5应用界面组件使用示例教程
- Vue.js开发利器:chrome-vue-devtools插件解析
- 掌握ElectronBrowserJS:打造跨平台电子应用
- 前端导师教程:构建与部署社交证明页面
- Java多线程与线程安全在断点续传中的实现
- 免Root一键卸载安卓预装应用教程
- 易语言实现高级表格滚动条完美控制技巧
- 超声波测距尺的源码实现
- 数据可视化与交互:构建易用的数据界面
- 实现Discourse外聘回复自动标记的简易插件
- 链表的头插法与尾插法实现及长度计算
- Playwright与Typescript及Mocha集成:自动化UI测试实践指南
- 128x128像素线性工具图标下载集合
- 易语言安装包程序增强版:智能导入与重复库过滤
- 利用AJAX与Spotify API在Google地图中探索世界音乐排行榜