EKF-ENN融合算法提升瓦斯涌出量预测精度
121 浏览量
更新于2024-09-05
1
收藏 835KB PDF 举报
在"第34卷第9期辽宁工程技术大学学报(自然科学版)2015年9月"的文章《EKF-ENN算法在瓦斯涌出量预测中的应用》中,研究人员针对瓦斯涌出量这一复杂且受到多重因素影响的问题,提出了结合扩展卡尔曼滤波(EKF)算法与Elman神经网络(ENN)的创新预测方法。瓦斯涌出量的预测是矿井安全管理的关键环节,传统的预测方法往往难以准确捕捉其非线性特性。
EKF滤波器作为一种有效的动态系统估计工具,被用于实时优化Elman神经网络的权重和阈值,从而实现全局寻优。这种耦合算法构建了一个绝对瓦斯涌出量预测模型,它能够充分利用矿井的历史监测数据,提供更为精确和可靠的预测结果。通过实验验证,该模型的预测性能优越,预测平均相对误差仅为1.67%,平均相对变动值ARV更是低至0.000 768 1,显示出极高的预测精度和良好的泛化能力。
Elman神经网络作为动态反馈网络的一种,其自我学习和适应性强,与EKF相结合后,能更好地处理瓦斯涌出量的动态变化,提高预测的稳定性。相比于其他预测模型,EKF优化后的Elman神经网络模型具有显著的优势,对于复杂且不断变化的瓦斯涌出环境,这无疑是一项重要的技术创新。
这项研究不仅提升了瓦斯涌出量预测的准确性,也为煤矿安全管理和灾害预防提供了科学依据。未来,这种方法有望在更多的工业领域,特别是在那些涉及复杂动态系统的预测任务中得到广泛应用。
291 浏览量
110 浏览量
2023-06-02 上传
1681 浏览量
2022-12-17 上传
213 浏览量
117 浏览量
113 浏览量
114 浏览量

weixin_38572979
- 粉丝: 4
最新资源
- 服务器监控与日志管理的.p文件上传策略
- Visual C++网络编程案例源代码精解(前四章)
- Nihao3d:探索Flash3D学习的最佳实践平台
- Vue2日期选择器组件:vue2-datepicker的介绍与使用
- 全技术栈源码资源:灰色iso苹果风格WAP企业网站模板
- tcomb-form-redux-test开发环境启动指南
- 利用Ext JS与Asp.Net MVC 3实现CMS用户管理后台系统
- 英文版man手册CHM文件的介绍与应用
- 全面解析Firebase与OpenCV在网站开发中的应用教程
- 十大Android案例应用源码免费下载学习
- Java JDK 1.8 64位版下载安装教程
- 分析非对称三角后缘调制数字V-2控制Buck变换器
- android省市联动实现技巧与源码解析
- Qt中间件微型Web框架递归技术实现解析
- Hough变换项目:直线检测技术详解
- 变频器工程应用与参数设置实例分析