MPI并行计算实验:埃拉托斯特尼筛法与性能优化

需积分: 0 4 下载量 26 浏览量 更新于2024-06-30 1 收藏 892KB DOCX 举报
"分布式并行计算-MPI实验指导书1" 该实验主要关注分布式并行计算,使用MPI(Message Passing Interface)编程模型来实现埃拉托斯特尼筛法,并进行性能分析与优化。MPI是一种标准的接口,允许程序员在分布式内存系统上编写并行程序,通过消息传递的方式进行进程间通信。 实验目标包括: 1. 学习如何配置和使用MPI环境,编译并执行MPI程序。 2. 实现基于MPI的埃拉托斯特尼筛法,这是一种用于寻找素数的有效算法。 3. 掌握并行程序的性能分析技巧,如计算加速比和并行效率,以及如何通过这些指标优化程序。 4. 根据给定的优化思路改进算法,进一步提升性能,并提供详细的实验报告。 实验内容涉及的操作系统是Windows,编程环境为mpich和Visual Studio 2013。学生需要按照附录的指示配置MPI编译运行环境,然后实现基础版本的埃拉托斯特尼筛法(sieve1)。接着,他们需要在不同数据规模和进程配置下测试sieve1,绘制加速比-处理器曲线和并行效率与进程数的关系曲线,分析效率变化的原因。 实验要求严格,要求每个学生独立完成,禁止抄袭。实验报告需要包含程序的流程图或伪代码,调试过程,结果分析,以及程序运行结果的截图。此外,学生需要根据附录提供的优化思路设计并实现优化后的并行算法,对每次优化的效果进行评估和分析。 实验报告应包含以下部分: 1. 对每种优化方法的详细解释,包括流程图和伪代码,以及代码注释。 2. 调试过程的描述,包括遇到的问题及其解决方案,以及对调试和执行结果的分析。 3. 提供程序运行的截图,展示加速比、取消并行效率的曲线,并解释性能变化的原因。 4. 提交源代码给助教审核。 在配置MPI环境时,学生需要下载并安装mpich,然后在Visual Studio 2013中创建空项目并设置相应的配置属性,以便能够在VS环境中编译和运行MPI程序。 这个实验旨在让学生深入理解并行计算的基本原理和实践,以及如何通过MPI进行分布式计算,同时培养他们的性能调优能力和问题解决能力。