广义均值移动跟踪算法在视频目标跟踪中的应用研究
需积分: 0 92 浏览量
更新于2024-09-11
收藏 1.31MB PDF 举报
广义均值移动跟踪算法
本文对Bradski和Comaniciu/Meer等人的工作加以推广,给出了广义均值移动跟踪算法。该算法基于搜索窗内各像素权值的零阶矩来计算更新其搜索窗口尺寸。然后证明现有的两种基本算法都可以归纳到广义均值移动跟踪算法的统一框架中。
知识点1: 均值移动算法的基本原理
均值移动算法是由Fukunaga等在非参概率密度估计中求解概率密度函数的极值问题时提出的。其原理简单,实时性能优越。该算法可以应用于图像处理、视频目标跟踪等领域中。
知识点2: CAMSHIFT算法和Comaniciu/Meer算法
CAMSHIFT算法和Comaniciu/Meer算法是均值移动在视频目标跟踪中最为常用的两个基本算法。CAMSHIFT算法基于搜索窗口内的像素权值来计算更新其搜索窗口位置,而Comaniciu/Meer算法则基于搜索窗口内的像素权值的零阶矩来计算更新其搜索窗口尺寸。
知识点3: 广义均值移动跟踪算法的优点
广义均值移动跟踪算法可以将现有的两种基本算法归纳到统一的框架中,提高了算法的通用性和实时性能。该算法可以应用于多段视频序列的跟踪,具有广泛的应用前景。
知识点4: 视觉跟踪技术的应用
视觉跟踪技术可以自动检测和跟踪视频序列中的目标,估计目标的运动参数和运动状态。该技术可以应用于智能视频监控、友好人机交互、基于内容的视频检索和视频缩放、虚拟现实等领域中。
知识点5: 均值移动算法的发展历程
均值移动算法的发展历程可追溯到Fukunaga等人在非参概率密度估计中提出的原理。后来,Cheng等人将其应用于图像处理领域中,引起了研究人员的关注。Fashing等人证明了均值移动算法的优越性,提高了该算法的应用价值。
知识点6: 广义均值移动跟踪算法的实现细节
广义均值移动跟踪算法的实现细节包括:(1)采用一个一般形式的相似性度量函数;(2)推导相应的像素权值计算和搜索窗口位置更新公式;(3)基于搜索窗内各像素权值的零阶矩来计算更新其搜索窗口尺寸。
知识点7: 广义均值移动跟踪算法的实验结果
实验结果表明,广义均值移动跟踪算法可以在多段视频序列中跟踪目标,具有良好的跟踪性能。该算法可以应用于智能视频监控、友好人机交互、基于内容的视频检索和视频缩放、虚拟现实等领域中。
2023-03-10 上传
2022-05-29 上传
2019-08-21 上传
点击了解资源详情
点击了解资源详情
点击了解资源详情
点击了解资源详情
点击了解资源详情
点击了解资源详情
小王子的猫
- 粉丝: 0
- 资源: 9