使用Python与OpenCV构建高级计算机视觉项目

需积分: 0 0 下载量 147 浏览量 更新于2024-07-17 收藏 5.83MB PDF 举报
"OpenCV-with-Python-Blueprints.pdf.pdf" 本书《OpenCV with Python Blueprints》由Michael Beyeler撰写,旨在帮助读者设计和开发高级计算机视觉项目,使用的主要工具是开源计算机视觉库OpenCV,结合Python编程语言。OpenCV是一个广泛应用于图像处理和计算机视觉领域的库,它提供了丰富的函数和算法,能够处理图像和视频数据,进行特征检测、对象识别、图像分割等任务。 在学习和应用这本书的内容时,读者可以期待掌握以下关键知识点: 1. **基础概念**:了解计算机视觉的基本概念,包括图像处理、特征提取、机器学习以及深度学习在计算机视觉中的应用。 2. **OpenCV安装与配置**:学会在不同操作系统(如Windows、Linux和Mac OS)上安装和配置OpenCV库,以及Python环境的设置。 3. **图像处理**:掌握基本的图像操作,如读取、显示、保存图像,以及色彩空间转换(如RGB到灰度或HSV),图像滤波(如高斯滤波和中值滤波),以及图像的几何变换(如平移、旋转、缩放)。 4. **特征检测**:学习如何使用OpenCV实现不同的特征检测算法,如SIFT、SURF、ORB等,用于图像匹配和物体识别。 5. **对象检测**:理解Haar级联分类器和HOG(Histogram of Oriented Gradients)方法,用于人脸检测和行人检测。 6. **图像分割**:学习阈值分割、区域生长、GrabCut等技术,用于将图像分割成有意义的部分。 7. **视频处理**:处理和分析视频流,实现运动检测、背景减除等应用场景。 8. **深度学习与OpenCV**:探索如何结合OpenCV与深度学习框架(如TensorFlow、Keras)进行图像分类、目标检测和语义分割。 9. **实际项目开发**:通过实例项目来实践所学知识,例如创建一个实时的交通标志检测系统、人脸识别登录系统或者视频中的人体姿态估计。 10. **最佳实践和优化**:了解如何优化代码性能,提高计算效率,同时保持代码的可读性和可维护性。 请注意,书中可能还包含对第三方库和工具的引用,这些工具和库可以增强OpenCV的功能,例如NumPy用于高效的数组操作,Matplotlib用于数据可视化,以及Scikit-learn等机器学习库。 最后,虽然作者和出版商已尽力确保书中信息的准确性,但计算机科学领域发展迅速,某些信息可能随着时间的推移而过时,因此读者在应用书中的内容时,应当结合最新的技术动态进行更新和验证。
2016-08-16 上传
OpenCV with Python Blueprints By Michael Beyeler 2015 | 230 Pages | ISBN: 1785282697 | Design and develop advanced computer vision projects using OpenCV with Python About This Book Program advanced computer vision applications in Python using different features of the OpenCV library Practical end-to-end project covering an important computer vision problem All projects in the book include a step-by-step guide to create computer vision applications Who This Book Is For This book is for intermediate users of OpenCV who aim to master their skills by developing advanced practical applications. Readers are expected to be familiar with OpenCV's concepts and Python libraries. Basic knowledge of Python programming is expected and assumed. What You Will Learn Generate real-time visual effects using different filters and image manipulation techniques such as dodging and burning Recognize hand gestures in real time and perform hand-shape analysis based on the output of a Microsoft Kinect sensor Learn feature extraction and feature matching for tracking arbitrary objects of interest Reconstruct a 3D real-world scene from 2D camera motion and common camera reprojection techniques Track visually salient objects by searching for and focusing on important regions of an image Detect faces using a cascade classifier and recognize emotional expressions in human faces using multi-layer peceptrons (MLPs) Recognize street signs using a multi-class adaptation of support vector machines (SVMs) Strengthen your OpenCV2 skills and learn how to use new OpenCV3 features