单片机实习报告:跑马灯控制与程序调试

需积分: 16 2 下载量 7 浏览量 更新于2024-09-09 收藏 275KB DOC 举报
"基于单片机的跑马灯设计,涉及单片机小系统实习板的使用、程序编制与调试,以及键盘显示等模块。旨在让学生掌握电路原理、单片机工作原理和开发方法,提升实践能力。" 本文将详细讨论在基于单片机的跑马灯设计中涉及的关键知识点,包括电路原理、单片机编程、硬件测试与故障排除,以及特定功能模块的实现。 首先,单片机小系统实习板是进行单片机学习和实践的重要工具。它包含必要的电路元件,如微处理器、存储器、输入/输出端口等,帮助学生理解和掌握电路原理图。通过实习板,学生能了解到每个组件的作用及其在整个系统中的相互作用。 其次,掌握程序编制和调试方法是单片机设计的核心环节。这涉及到系统初始化、存储器操作、端口操作等多个方面。系统初始化是启动单片机的第一步,包括设置时钟、配置寄存器等。存储器操作涉及读写数据,端口操作则关乎输入输出信号的管理。此外,模拟量采集和输出涉及A/D和D/A转换,串口通讯用于设备间的通信,IIC协议常用于连接外部设备如传感器,而日历时钟芯片则提供时间戳功能。 键盘显示是设计中的一个重要部分。在这个项目中,可能使用到的是按键输入,通过键盘接口读取用户指令,然后在LED或数码管上显示相应信息。键盘的扫描和处理是实现交互式功能的关键,而数码管显示则涉及数字和字符的编码以及驱动技术。 在实现跑马灯效果时,有多种模式,如单向循环、双向循环和花样流水灯。这些效果通常通过编程控制LED灯的亮灭顺序来实现,可以采用查表法来定义任意点亮历程,并使用软件延时函数控制速度。 此外,开发过程中还会使用到像keil这样的集成开发环境,用于编写和调试汇编语言程序。STC-ISP软件则用于单片机的在线烧录,使得程序可以直接下载到实习板上运行。同时,proteus软件可用于虚拟仿真,验证程序的正确性,无需实际硬件即可预览运行效果。 基于单片机的跑马灯设计是一个综合性的学习项目,涵盖了硬件电路设计、软件编程、系统集成和故障排查等多方面技能,旨在培养学生的实践能力和创新能力,为他们在未来应对复杂电子系统的设计和开发奠定坚实基础。
2011-04-19 上传
文库帮手网 www.365xueyuan.com 免费帮下载 百度文库积分 资料 本文由pengliuhua2005贡献 doc文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 51 单片机设计跑马灯的程序用(c 语言)编写 P1 口接 8 个发光二极管共阳,烧入下面程序 #include unsigned char i; unsigned char temp; unsigned char a,b; void delay(void) { unsigned char m,n,s; for(m=20;m>0;m--) for(n=20;n>0;n--) for(s=248;s>0;s--); } void main(void) { while(1) { temp=0xfe; P1=temp; delay(); for(i=1;i<8;i++) { a=temp(8-i); P1=a|b; delay(); } for(i=1;i>i; b=temp<= 4000 ){ us250 = 0; if( ++s1 >= 10 ){ s1 = 0; if( ++s10 >= 6 ) s10 = 0; if( key10 == 1 ){ //等松键 if( P3.2 == 1 ) key10=0; } //未按键 37. else{ 38. 39. 40. 41. if( P3.2 == 0 ){ key10 = 1; if( ++s10 >= 6 ) s10 = 0; break; //结束“循环 2”,修改显示 42. 43. 44. 45. 46. } } //按个位键处理 P3.3 = 1; //P3.3 作为输入,先要输出高电平 if( key1 == 1 ) //等松键 47. { if( P3.3 == 1 ) key1=0; } 48. 49. 50. 51. 52. 53. 54. 55. } } //循环 2’end }//循环 1’end } else { //未按键 if( P3.3 == 0 ){ key1 = 1; if( ++s1 >= 10 ) s1 = 0; break; //结束“循环 2”,修改显示 56. }//main’end 第三节: 第三节:十字路口交通灯 如果一个单位时间为 1 秒,这里设定的十字路口交通灯按如下方式四个步骤循环工作: 60 个单位时间,南北红,东西绿;λ 10 个单位时间,南北红,东西黄;λ 60 个单位时间,南北绿,东西红;λ 10 个单位时间,南北黄,东西红;λ 解:用 P1 端口的 6 个引脚控制交通灯,高电平灯亮,低电平灯灭。 代码 1. 2. 3. 4. 5. 6. 7. 8. 9. #include //sbit 用来定义一个符号位地址,方便编程,提高可读性,和可移植性 sbit SNRed =P1^0; //南北方向红灯 //南北方向黄灯 //南北方向绿灯 //东西方向红灯 //东西方向黄灯 //东西方向绿灯 sbit SNYellow =P1^1; sbit SNGreen =P1^2; sbit EWRed =P1^3; sbit EWYellow =P1^4; sbit EWGreen =P1^5; /* 用软件产生延时一个单位时间 */ 10. void Delay1Unit( void ) 11. { 12. 13. 14. unsigned int i, j; for( i=0; i<1000; i++ ) for( j<0; j= 8 ) i=0; 12. } 13. void Timer0IntRoute( void ) interrupt 1 14. { 15. 16. TL0 = -1000; //由于 TL0 只有 8bits,所以将(-1000)低 8 位赋给 TL0 TH0 = (-1000)>>8; //取(-1000)的高 8 位赋给 TH0,重新定时 1ms 17. 18. } DisplayBrush(); 19. void Timer0Init( void ) 20. { TMOD=(TMOD & 0xf0) | 0x01; //初始化,定时器 T0,工作方式 1 21. 22. 23. 24. 25. } 26. void Display( unsigned char index, unsigned char dataValue ){ DisBuf[ inde x ] = dataValue; } 27. void main( void ) 28. { 29. unsigned char i; 30. for( i=0; i>8; TR0 = 1; ET0 = 1; //允许 T0 开始计数 //允许 T0 计数溢出时产生中断请求 第五节:键盘驱动 第五节: 指提供一些函数给任务调用,获取按键信息,或读取按键值。 定义一个头文档 ,描述可用函数,如下: 代码 1. 2. 3. 4. 5. 6. 7. #ifndef _KEY_H_ #define _KEY_H_ //防止重复引用该文档,如果没有定义过符号 _KEY_H_,则编译下面语句 防止重复引用该文档, , 防止重复引用该文档 //只要引用过一次,即 #include ,则定义符号 _KEY_H_ 只要引用过一次, 只要引用过一次 , unsigned char keyHit( void ); //如果按键,则返回非0,否则返回0 unsigned char keyGet( void ); //读取按键值,如果没有按键则等待到按键为止 void keyPut( unsigned char ucKeyVal ); //保存按键值 ucKeyVal 到按键缓冲队列末 void keyBack( unsigned char ucKeyVal ); //退回键值 ucKeyVal 到按键缓冲队列首 #endif 定义函数体文档 KEY.C,如下: 代码 1. 2. 3. #include “key.h” #define KeyBufSize 16 //定义按键缓冲队列字节数 定义按键缓冲队列字节数 unsigned char KeyBuf[ KeyBufSize ]; //定义一个无符号字符数组作为按键缓冲队列。该队列为 先进 4. 5. 6. 7. 8. 9. 10. //先出,循环存取,下标从0到 KeyBufSize-1 unsigned char KeyBufWp=0; //作为数组下标变量,记录存入位置 unsigned char KeyBufRp=0; //作为数组下标变量,记录读出位置 //如果存入位置与读出位置相同,则表明队列中无按键数据 unsigned char keyHit( void ) { if( KeyBufWp == KeyBufRp ) return( 0 ); else return( 1 ); } 11. unsigned char keyGet( void ) 12. { unsigned char retVal; //暂存读出键值 13. while( keyHit()==0 ); //等待按键,因为函数 keyHit()的返回值为 0 表示无按键 14. retVal = KeyBuf[ KeyBufRp ]; //从数组中读出键值 15. if( ++KeyBufRp >= KeyBufSize ) KeyBufRp=0; //读位置加1, 超出队列则循环回初始位置 16. 17. } 18. 19. void keyPut( unsigned char ucKeyVal ) 20. { KeyBuf[ KeyBufWp ] = ucKeyVal; //键值存入数组 21. if( ++KeyBufWp >= KeyBufSize ) KeyBufWp=0; //存入位置加1, 超出队列则循环回初始位置 return( retVal ); 22. } 23. 由于某种原因,读出的按键,没有用,但其它任务要用该按键,但传送又不方便。此时可以退回按键队列。 就如取错了信件,有必要退回一样 24. void keyBack( unsigned char ucKeyVal ) 25. { 26. 27. 如果 KeyBufRp=0; 减 1 后则为 FFH,大于 KeyBufSize,即从数组头退回到数组尾。或者由于干扰使得 KeyBufRp 超出队列位置,也要调整回到正常位置, 28. */ 29. if( --KeyBufRp >= KeyBufSize ) KeyBufRp=KeyBufSize-1; 30. KeyBuf[ KeyBufRp ] = ucKeyVal; //回存键值 31. } 下面渐进讲解键盘物理层的驱动。 电路共同点:P2 端口接一共阴数码管,共阴极接 GND,P2.0 接 a 段、P2.1 接 b 段、…、P2.7 接 h 段。 软件共同点:code unsigned char Seg7Code[10] 是七段数码管共阴编码表。 Code unsigned char Seg7Code[16]= // 0 1 2 3 4 5 6 7 8 9 A b C d E F {0x3f, 0x06, 0x5b, 0x4f, 0x66, 0x6d, 0x7d, 0x07, 0x7f, 0x6f, 0x77, 0x7c, 0x39, 0x5e, 0x79, 0x71}; 例一:P1.0 接一按键到 GND,键编号为‘6’,显示按键。 代码 1. 2. 3. 4. 5. 6. 7. 8. 9. #include #include “KEY.H” void main( void ) { P1_0 = 1; //作为输入引脚,必须先输出高电平 while( 1 ) //永远为真,即死循环 { if( P1_0 == 0 ) //如果按键,则为低电平 { keyPut( 6 ); //保存按键编号值为按键队列 while( P1_0 == 0 ); //如果一直按着键,则不停地执行该循环,实际是等待松键 } 10. if( keyHit() != 0 ) //如果队列中有按键 11. P2=Seg7Code[ keyGet() ]; //从队列中取出按键值,并显示在数码管上 12. 13. } } 例二:在例一中考虑按键 20ms 抖动问题。 代码 1. 2. 3. 4. 5. 6. 7. 8. 9. #include #include “KEY.H” void main( void ) { P1_0 = 1; //作为输入引脚,必须先输出高电平 while( 1 ) //永远为真,即死循环 { if( P1_0 == 0 ) //如果按键,则为低电平 { delay20ms(); //延时 20ms,跳过接下抖动 keyPut( 6 ); //保存按键编号值为按键队列 while( P1_0 == 0 ); //如果一直按着键,则不停地执行该循环,实际是等待松键 10. delay20ms(); //延时 20ms,跳过松开抖动 11. } 12. if( keyHit() != 0 ) //如果队列中有按键 13. P2=Seg7Code[ keyGet() ]; //从队列中取出按键值,并显示在数码管上 14. 15. } } 例三:在例二中考虑干扰问题。即小于 20ms 的负脉冲干扰。 代码 1. 2. 3. 4. 5. 6. #include #include “KEY.H” void main( void ) { P1_0 = 1; //作为输入引脚,必须先输出高电平 while( 1 ) //永远为真,即死循环 { if( P1_0 == 0 ) //如果按键,则为低电平 7. 8. 9. 10. { delay20ms(); //延时 20ms,跳过接下抖动 if( P1_0 == 1 ) continue; //假按键 keyPut( 6 ); //保存按键编号值为按键队列 while( P1_0 == 0 ); //如果一直按着键,则不停地执行该循环,实际是等待松键 11. delay20ms(); //延时 20ms,跳过松开抖动 12. } 13. if( keyHit() != 0 ) //如果队列中有按键 14. P2=Seg7Code[ keyGet() ]; //从队列中取出按键值,并显示在数码管上 15. 16. } } 例四:状态图编程法。通过 20ms 周期中断,扫描按键。 代码 采用晶体为 12KHz 时,指令周期为 1ms(即主频为 1KHz),这样 T0 工作在定时器方式 2,8 位自动重载。 计数值为 20,即可产生 20ms 的周期性中断,在中断服务程序中实现按键扫描 2. 3. 4. 5. 6. 7. 8. 9. #include #include “KEY.H” void main( void ) { TMOD = (TMOD & 0xf0 ) | 0x02; //不改变 T1 的工作方式,T0 为定时器方式 2 TH0 = -20; TL0=TH0; TR0=1; //计数周期为 20 个主频脉,即 20ms //先软加载一次计数值 //允许 T0 开始计数 //允许 T0 计数溢出时产生中断请求 //允许 CPU 响应中断请求 1. 10. ET0=1; 11. EA=1; 12. while( 1 ) //永远为真,即死循环 13. { 14. if( keyHit() != 0 ) //如果队列中有按键 15. P2=Seg7Code[ keyGet() ]; //从队列中取出按键值,并显示在数码管上 16. 17. } 18. void timer0int( void ) interrupt 1 //20ms;T0 的中断号为 1 19. { static unsigned char sts=0; 20. P1_0 = 1; //作为输入引脚,必须先输出高电平 } 21. switch( sts ) 22. 23. 24. { case 0: if( P1_0==0 ) sts=1; break; //按键则转入状态 1 case 1: //假按错,或干扰,回状态 0 25. if( P1_0==1 ) sts=0; 26. else{ sts=2; keyPut( 6 ); } //确实按键,键值入队列,并转状态 2 27. break; 28. case 2: if( P1_0==1 ) sts=3; break; //如果松键,则转状态 3 29. 30. 31. 32. 33. } } case 3: if( P1_0==0 ) sts=2; else sts=0; //假松键,回状态 2 //真松键,回状态 0,等待下一次按键过程 例五:状态图编程法。 代码 如果采用晶体为 12MHz 时,指令周期为 1us(即主频为 1MHz),要产生 20ms 左右的计时,则计数值达到 20000,T0 工作必须为定时器方式 1,16 位非自动重载,即可产生 20ms 的周期性中断,在中断服务程序中 实现按键扫描 2. 3. 4. 5. 6. 7. 8. 9. #include #include “KEY.H” void main( void ) { TMOD = (TMOD & 0xf0 ) | 0x01; //不改变 T1 的工作方式,T0 为定时器方式 1 TL0 = -20000; TH0 = (-20000)>>8; TR0=1; //计数周期为 20000 个主频脉,自动取低 8 位 //右移 8 位,实际上是取高 8 位 1. //允许 T0 开始计数 //允许 T0 计数溢出时产生中断请求 //允许 CPU 响应中断请求 10. ET0=1; 11. EA=1; 12. while( 1 ) //永远为真,即死循环 13. { 14. if( keyHit() != 0 ) //如果队列中有按键 15. P2=Seg7Code[ keyGet() ]; //从队列中取出按键值,并显示在数码管上 16. 17. } 18. void timer0int( void ) interrupt 1 //20ms;T0 的中断号为 1 19. { static unsigned char sts=0; 20. TL0 = -20000; 21. TH0 = (-20000)>>8; 22. P1_0 = 1; //方式 1 为软件重载 //右移 8 位,实际上是取高 8 位 } //作为输入引脚,必须先输出高电平 23. switch( sts ) 24. 25. 26. { case 0: if( P1_0==0 ) sts=1; break; //按键则转入状态 1 case 1: //假按错,或干扰,回状态 0 27. if( P1_0==1 ) sts=0; 28. else{ sts=2; keyPut( 6 ); } //确实按键,键值入队列,并转状态 2 29. break; 30. 31. 32. 33. case 2: if( P1_0==1 ) sts=3; break; //如果松键,则转状态 3 case 3: if( P1_0==0 ) sts=2; else sts=0; //假松键,回状态 2 //真松键,回状态 0,等待下一次按键过程 34. 35. } } 例六:4X4 按键。 代码 由 P1 端口的高 4 位和低 4 位构成 4X4 的矩阵键盘, 本程序只认为单键操作为合法, 同时按多键时无效。 这样下面的 X,Y 的合法值为 0x7, 0xb, 0xd, 0xe, 0xf,通过表 keyCode 影射变换可得按键值 1. 2. 3. 4. 5. 6. 7. 8. #include #include “KEY.H” unsigned char keyScan( void ) //返回 0 表示无按键,或无效按键,其它值为按键编码值 { code unsigned char keyCode[16]= /0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xA, 0xB, 0xC, 0xD, 0xE, 0 xF 9. { 0, }; 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 3, 4, 0 10. unsigned char x, y, retVal; 11. P1=0x0f; 12. x=P1&0x0f; 13. P1=0xf0; //低四位输入,高四位输出 0 //P1 输入后,清高四位,作为 X 值 //高四位输入,低四位输出 0 14. y=(P1 >> 4) & 0x0f; //P1 输入后移位到低四位,并清高四位,作为 Y 值 15. retVal = keyCode[x]*4 + keyCode[y]; //根据本公式倒算按键编码 16. if( retVal==0 ) return(0); else return( retVal-4 ); 17. } 18. //比如按键‘1’,得 X=0x7,Y=0x7,算得 retVal= 5,所以返回函数值 1。 19. //双如按键‘7’,得 X=0xb,Y=0xd,算得 retVal=11,所以返回函数值 7。 20. void main( void ) 21. { 22. TMOD = (TMOD & 0xf0 ) | 0x01; //不改变 T1 的工作方式,T0 为定时器方式 1 23. TL0 = -20000; 24. TH0 = (-20000)>>8; 25. TR0=1; 26. ET0=1; 27. EA=1; //计数周期为 20000 个主频脉,自动取低 8 位 //右移 8 位,实际上是取高 8 位 //允许 T0 开始计数 //允许 T0 计数溢出时产生中断请求 //允许 CPU 响应中断请求 28. while( 1 ) //永远为真,即死循环 29. { 30. if( keyHit() != 0 ) //如果队列中有按键 31. P2=Seg7Code[ keyGet() ]; //从队列中取出按键值,并显示在数码管上 32. 33. } 34. void timer0int( void ) interrupt 1 //20ms;T0 的中断号为 1 } 35. { static unsigned char sts=0; 36. TL0 = -20000; 37. TH0 = (-20000)>>8; 38. P1_0 = 1; //方式 1 为软件重载 //右移 8 位,实际上是取高 8 位 //作为输入引脚,必须先输出高电平 39. switch( sts ) 40. 41. 42. { case 0: if( keyScan()!=0 ) sts=1; break; //按键则转入状态 1 case 1: //假按错,或干扰,回状态 0 43. if( keyScan()==0 ) sts=0; 44. else{ sts=2; keyPut( keyScan() ); } //确实按键,键值入队列,并转状态 2 45. break; 46. 47. 48. 49. 50. 51. } } case 2: if(keyScan()==0 ) sts=3; break; //如果松键,则转状态 3 case 3: if( keyScan()!=0 ) sts=2; else sts=0; //假松键,回状态 2 //真松键,回状态 0,等待下一次按键过程 第六节: 第六节:低频频率计 实例目的:学时定时器、计数器、中断应用 说明:选用 24MHz 的晶体,主频可达 2MHz。用 T1 产生 100us 的时标,T0 作信号脉冲计数器。假设 晶体频率没有误差,而且稳定不变(实际上可达万分之一);被测信号是周期性矩形波(正负脉冲宽 度都不能小于 0.5us),频率小于 1MHz,大于 1Hz。要求测量时标 1S,测量精度为 0.1%。 解:从测量精度要求来看,当频率超过 1KHz 时,可采用 1S 时标内计数信号脉冲个数来测量信号频, 而信号频率低于 1KHz 时,可以通过测量信号的周期来求出信号频率。两种方法自动转换。 对于低于 1KHz 的信号,信号周期最小为 1ms,也就是说超过 1000us,而我们用的定时器计时脉冲周 期为 0.5us,如果定时多计或少计一个脉冲,误差为 1us,所以相对误差为 1us/1000us=0.1%。信号 周期越大,即信号频率越低,相对误差就越小。 从上面描述来看,当信号频率超过 1KHz 后,信号周期就少于 1000us,显然采用上面的测量方法,不 能达到测量精度要求,这时我们采用 1S 单位时间计数信号的脉冲个数,最少能计到 1000 个脉冲,由 于信号频率不超过 1MHz,而我们定时脉冲为 2MHz,最差多计或少计一个信号脉冲,这样相对误差为 1/1000,可见信号频率越高,相对误差越小。 信号除输入到 T1(P3.5)外,还输入到 INT1(P3.3)。 代码 //对 100us 时间间隔单位计数,即有多少个 100us。 1. 2. 3. 4. 5. 6. 7. unsigned int us100; unsigned char Second; unsigned int K64; unsigned char oldT0; //对 64K 单位计数,即有多少个 64K unsigned int oldus, oldK64, oldT1; unsigned long fcy; bit HighLow=1; //存放频率值,单位为 Hz //1:表示信号超过 1KHz;0:表示信号低于 1KHz。 8. 9. 10. void InitialHigh( void ) { IE=0; IP=0; HighLow=1; 11. TMOD = (TMOD & 0xf0) | 0x02; TH0=-200; TL0=TH0; PX0=1; T0=1; 12. 13. 14. 15. 16. 17. } 18. void InitialLow( void ) 19. { 20. IE=0; IP=0; HighLow=0; TMOD = (TMOD & 0x0f) | 0x50; TH1=0; TL1=0; T1=1; ET1=1; Us100=0; Second=0; K64=0; oldK64=0; oldT1=0; TCON |= 0x50; EA = 1; //同时置 TR0=1; TR1=1; 同时置 21. TMOD = (TMOD & 0xf0) | 0x02; TH0=-200; TL0=TH0; ET0=1; TR0=1; 22. 23. 24. 25. 26. } 27. void T0intr( void ) interrupt 1 28. { if( HighLow==0 ) ++us100; 29. else 30. if( ++us100 >= 10000 ) 31. { unsigned int tmp1, tmp2; INT1 = 1; IT1=1; EX1=1; Us100=0; Second=0; K64=0; oldK64=0; oldT1=0; EA = 1; 32. TR1=0; tmp1=(TH1<<8) + (TL1); tmp2=K64; TR1=1; 33. fcy=((tmp2-oldK64)<<16) + (tmp1-oldT1); 34. oldK64=tmp1; oldT1=tmp2; 35. Second++; 36. us100=0; 37. } 38. } 39. void T1intr( void ) interrupt 3 { ++K64; } 40. void X1intr( void ) interrupt 2 41. { static unsigned char sts=0; 42. switch( sts ) 43. { 44. case 0: sts = 1; break; 45. case 1: oldT0=TL0; oldus=us100; sts=2; break; 46. case 2: 47. { 48. 49. 50. 51. 52. } 53. 54. 55. Sts = 0; break; } unsigned char tmp1, tmp2; TR0=0; tmp1=TL0; tmp2=us100; TR0=1; fcy = 1000000L/( (tmp2-oldus)*100L + (256-tmp1)/2 ); Second ++; 56. } 57. void main( void ) 58. { 59. if( HighLow==1) InitialHigh(); else InitialLow(); 60. 61. While(1) { 62. if( Second != 0 ) 63. { 64. Second = 0; 65. //display fcy 引用前面的数码管驱动程序, 引用前面的数码管驱动程序,注意下面对 T0 中断服务程序的修改 66. { unsigned char i; 67. 68. } 69. if( HighLow==1 ) 70. if( fcy1000L ){ InitalHigh();} for( i=0; i= 10000 ) 83. { unsigned int tmp1, tmp2; 84. TR1=0; tmp1=(TH1<<8) + (TL1); tmp2=K64; TR1=1; 85. fcy=((tmp2-oldK64)<= 10 ){ ms=0; DisplayBrush(); } //1ms 数码管刷新 第七节: 第七节:电子表 单键可调电子表:主要学习编程方法。 外部中断应用,中断嵌 解:电子表分为工作状态和调整状态。平时为工作状态,按键不足一秒,接键为换屏‘S’。按键超过一 秒移位则进入调整状态‘C’,而且调整光标在秒个位开始。调整状态时,按键不足一秒为光标移动‘M’, 超过一秒则为调整读数,每 0.5 秒加一‘A’,直到松键;如果 10 秒无按键则自动回到工作状态‘W’。 如果有年、月、日、时、分、秒。四联数码管可分三屏显示,显示格式为“年月.”、“日.时.”、“分.秒”, 从小数点的位置来区分显示内容。(月份的十位数也可以用“-”和“-1”表示)。 代码 1. 2. 3. enum status = { Work, Change, Add, Move, Screen } //状态牧举 //计时和调整都是对下面时间数组 Time 进行修改 unsigned char Time[12]={0,4, 0,6, 1,0, 0,8, 4,5, 3,2}; //04 年 06 月 10 日 08 时 45 分 32 秒 4. 5. 6. 7. unsigned char cursor = 12; //指向秒个位,=0 时无光标 unsigned char YmDhMs = 3; //指向“分秒”显示 ,=0 时无屏显 static unsigned char sts = Work; 如果 cursor 不为 0,装入 DisBuf 的对应数位,按 0.2 秒周期闪烁,即设一个 0.1 秒计数器 S01,S01 为奇数时灭,S01 为偶数时亮。 8. 9. 小数点显示与 YmDhMs 变量相关。 */ 10. void DisScan( void ) //动态刷新显示时调用。没编完,针对共阴数码管,只给出控控制算法 11. { 12. //DisBuf 每个显示数据的高四位为标志,最高位 D7 为负号,D6 为小数点,D5 为闪烁 13. unsigned char tmp; 14. 15. 16. 17. 18. 19. } 20. void Display( void ) 21. { 22. if( cursor != 0 ){ YmDhMs=(cursor+3)/4; } //1..4=1; 5..8=2; 9..12=3 //根据状态进行显示 tmp = Seg7Code[?x & 0x1f ]; //设?x 为显示数据,高 3 位为控制位,将低 5 位变为七段码 if( ?x & 0x40 ) tmp |= 0x80; //添加小数点 if( ?x & 0x20 ){ if( S01 & 0x01 ) tmp=0; } //闪烁,S01 奇数时不亮 //这里没有处理负号位 //将 tmp 送出显示,并控制对应数码管动作显示 23. for( i=(YmDhMs-1)*4; i ‘9’) Dat=‘0’; } 二、 在上题的基础上,改为 2400bps,循环发送小写字母‘a’到‘z’,然后是大写字母‘A’到‘Z’。 代码 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. #include void main( void ) { TMOD = (TMOD & 0x0F) | 0x20; TH1 = -96; //注意不用倍频方式 PCON &= 0x7F; //SMOD = 0 TR1 = 1; SCON = 0x42; while( 1 ) { if( TI==1 ) { static unsigned char Dat=‘a’; SBUF = Dat; TI = 0; //If( ++Dat > ‘9’) Dat=‘0’; ++Dat; if( Dat == (‘z’+1) ) if( Dat == (‘Z’+1) ) } } Dat=‘A’; Dat=‘a’; 22. } 上述改变值时,也可以再设一变量表示当前的大小写状态,比如写成如下方式: 代码 1. 2. 3. 4. ++Dat; { static unsigned char Caps=1; if( Caps != 0 ) 5. 6. 7. 8. } if( Dat>‘Z’){ Dat=‘a’; Caps=0; } else if( Dat>‘z’){ Dat=‘A’; Caps=1; } 如下写法有错误:因为小 b 比大 Z 的编码值大,所以 Dat 总是‘a’ 代码 1. 2. 3. ++Dat; if( Dat>‘Z’){ Dat=‘a’} else if( Dat>‘z’){ Dat=‘A’} 三、 有 A 和 B 两台单片机,晶体频率分别为 13MHz 和 14MHz,在容易编程的条件下,以最快的速度进 行双工串行通信,A 给 B 循环发送大写字母从‘A’到‘Z’,B 给 A 循环发送小写字母从‘a’到‘z’,双方都用 中断方式进行收发。 解:由于晶体频率不同,又不成 2 倍关系,所以只有通信方式 1 和方式 3,由于方式 3 的帧比方式 1 多一位,显然方式 3 的有效数据(9/11)比方式 1(8/10)高,但要用方式 3 的第 9 位 TB8 来发送数 据,编程难度较大,这里方式 1 较容易编程。 在计算最高速率时,由于单方程,双未知数,又不知道波特率为多少,所以要综合各方面的条件,估 算出 A 和 B 的分频常数,分别为-13 和-14 时,速率不但相同,且为最大值。如下给出 A 机的程序: 代码 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. #include void main( void ) { TMOD = (TMOD & 0x0F) | 0x20; TH1 = -13; //注意用倍频方式 PCON |= 0x80; //SMOD = 1 TR1 = 1; SCON = 0x52; //REN = 1 ES = 1; EA = 1; while( 1 ); 12. } 13. void RS232_intr( void ) interrupt 4 14. { 15. 16. 17. 18. 19. 20. unsigned char rDat; if( RI == 1 ){ RI=0; rDat=SBUF; } if( TI==1 ) { static unsigned char tDat=‘a’; SBUF = tDat; //注意 RI 和 TI 任一位变为 1 都中断 21. 22. 23. 24. } } TI = 0; If( ++Dat > ‘z’) Dat=‘a’; 四、 多机通位 在方式 2 和方式 3,SM2 只对接收有影 响,当 SM2=1 时,只接收第 9 位等于 1 的帧(伪地址帧), 而 SM2=0 时,第 9 位不影响接收。λ 多机通信中,地址的确认与本机程序有关,所以可以实现点对点、点对组、以及通播方式的通信。λ 如果收发共用一总线,任何时刻只有一个发送源能占用总线发送数据,否则发生冲突。由此可构造无 竞争的令牌网;或者多主竞争总线网。λ 1
2024-07-20 上传
微信小程序的社区门诊管理系统流程不完善导致小程序的使用率较低。社区门诊管理系统的部署与应用,将对日常的门诊信息、预约挂号、检查信息、检查报告、病例信息等功能进行管理,这可以简化工作程序、降低劳动成本、提高工作效率。为了有效推动医院的合理配置和使用,迫切需要研发一套更加全面的社区门诊管理系统。 本论文主要介绍基于Php语言设计并实现了微信小程序的社区门诊管理系统。该小程序基于B/S即所谓浏览器/服务器模式,选择MySQL作为后台数据库去开发并实现一个以微信小程序的社区门诊为核心的系统以及对系统的简易介绍。 本课题要求实现一套微信小程序的社区门诊管理系统,系统主要包括管理员模块和用户模块、医生模块功能模块。 用户注册,在用户注册页面通过填写账号、密码、确认密码、姓名、性别、手机、等信息进行注册操作。用户登陆微信端后,可以对首页、门诊信息、我的等功能进行详细操作。门诊信息,在门诊信息页面可以查看科室名称、科室类型、医生编号、医生姓名、 职称、坐诊时间、科室图片、点击次数、科室介绍等信息进行预约挂号操作。检查信息,在检查信息页面可以查看检查项目、检查地点、检查时间、检查费用、账号、姓名、医生编号、医生姓名、是否支付、审核回复、审核状态等信息进行支付操作。我的,在我的页面可以对预约挂号、检查信息、检查报告、处方信息、费用信息等详细信息。 管理员登录进入社区门诊管理系统可以查看首页、个人中心、用户管理、医生管理、门诊信息管理、科室分类管理、预约挂号管理、检查信息管理、检查报告管理、病例信息管理、处方信息管理、费用信息管理、系统管理等信息进行相应操作。 医生登录进入社区门诊管理系统可以查看首页、个人中心、预约挂号管理、检查信息管理、检查报告管理、病例信息管理、处方信息管理等信息进行相应操作。