大数据技能大赛:离线数据处理与清洗实战
需积分: 0 101 浏览量
更新于2024-06-16
2
收藏 60KB DOCX 举报
在这个大数据技能大赛的任务中,参赛者被要求使用Scala编程语言和Apache Spark框架来处理离线数据。具体任务围绕着ods库中的数据抽取和清洗展开,目标是将ods库中的customer_inf表数据清洗并迁移至Hive的dwd库中。
数据清洗是数据分析的关键步骤,它涉及检查数据的准确性、完整性和一致性。参赛者需要编写代码,确保时间戳字段(timestamp类型)按照指定格式(yyyy-MM-ddHH:mm:ss)处理,如果没有提供毫秒数,则需要填充为00:00:00。如果dwd库中的某些表之前没有数据,只需正常抽取即可。
挑战的核心在于合并ods.customer_inf表中前一天的分区数据与dwd.customer_inf表的最新分区数据。合并过程基于customer_id字段,通过查找dwd.customer_inf表中最新修改时间(modified_time)的记录进行更新。如果数据首次进入dwd层,dwd_insert_time和dwd_modify_time会记录当前操作时间,并进行数据类型转换。对于已经存在的数据,如果进行了合并修改,dwd_insert_time保持不变,而dwd_modify_time更新为当前时间,其他字段保留最新的值。
在实现过程中,参赛者需要利用Hive的命令行工具(hivecli)来验证分区表dwd.dim_user_info的正确性,通过执行`showpartitions dwd.dim_user_info`命令来确认数据的正确加载和分区。
实验表的介绍强调了这个任务的实践性,参赛者需要对Spark的SQL操作、Hive的数据模型以及数据清洗策略有深入理解,同时具备良好的编程习惯和数据处理能力,以便准确、高效地完成任务。
这个比赛题目要求参赛者掌握如何运用大数据技术(如Spark和Hive)进行数据抽取、清洗,以及如何进行数据的合并和维护,这是一次对数据处理能力和编程技能的综合考验。
2024-01-04 上传
2024-03-17 上传
2024-01-15 上传
2022-11-25 上传
2015-06-08 上传
2024-04-05 上传
2021-07-10 上传
taoyundao_1
- 粉丝: 139
- 资源: 2
最新资源
- Android圆角进度条控件的设计与应用
- mui框架实现带侧边栏的响应式布局
- Android仿知乎横线直线进度条实现教程
- SSM选课系统实现:Spring+SpringMVC+MyBatis源码剖析
- 使用JavaScript开发的流星待办事项应用
- Google Code Jam 2015竞赛回顾与Java编程实践
- Angular 2与NW.js集成:通过Webpack和Gulp构建环境详解
- OneDayTripPlanner:数字化城市旅游活动规划助手
- TinySTM 轻量级原子操作库的详细介绍与安装指南
- 模拟PHP序列化:JavaScript实现序列化与反序列化技术
- ***进销存系统全面功能介绍与开发指南
- 掌握Clojure命名空间的正确重新加载技巧
- 免费获取VMD模态分解Matlab源代码与案例数据
- BuglyEasyToUnity最新更新优化:简化Unity开发者接入流程
- Android学生俱乐部项目任务2解析与实践
- 掌握Elixir语言构建高效分布式网络爬虫