Linux From Scratch - Version 6.5
2
Chapter 1. Introduction
1.1. How to Build an LFS System
The LFS system will be built by using an already installed Linux distribution (such as Debian, Mandriva, Red Hat, or
SUSE). This existing Linux system (the host) will be used as a starting point to provide necessary programs, including
a compiler, linker, and shell, to build the new system. Select the “development” option during the distribution
installation to be able to access these tools.
As an alternative to installing a separate distribution onto your machine, you may wish to use the Linux From Scratch
LiveCD or a LiveCD from a commercial distribution. The LFS LiveCD works well as a host system, providing all
the tools you need to successfully follow the instructions in this book. Unfortunately, development of the LiveCD
has not progressed recently and it only contains older versions of the source packages and patches (the versions not
labeled “-nosrc” or “-min”), and this book. For more information about the LFS LiveCD or to download a copy, visit
http://www.linuxfromscratch.org/livecd/.
Note
The LFS LiveCD might not work on newer hardware configurations, failing to boot or failing to detect
some devices such as some SATA hard drives.
Chapter 2 of this book describes how to create a new Linux native partition and file system. This is the place where
the new LFS system will be compiled and installed. Chapter 3 explains which packages and patches need to be
downloaded to build an LFS system and how to store them on the new file system. Chapter 4 discusses the setup of
an appropriate working environment. Please read Chapter 4 carefully as it explains several important issues you need
be aware of before beginning to work your way through Chapter 5 and beyond.
Chapter 5 explains the installation of a number of packages that will form the basic development suite (or toolchain)
which is used to build the actual system in Chapter 6. Some of these packages are needed to resolve circular
dependencies—for example, to compile a compiler, you need a compiler.
Chapter 5 also shows you how to build a first pass of the toolchain, including Binutils and GCC (first pass basically
means these two core packages will be reinstalled). The next step is to build Glibc, the C library. Glibc will be
compiled by the toolchain programs built in the first pass. Then, a second pass of the toolchain will be built. This
time, the toolchain will be dynamically linked against the newly built Glibc. The remaining Chapter 5 packages are
built using this second pass toolchain. When this is done, the LFS installation process will no longer depend on the
host distribution, with the exception of the running kernel.
This effort to isolate the new system from the host distribution may seem excessive. A full technical explanation as
to why this is done is provided in Section 5.2, “Toolchain Technical Notes”.
In Chapter 6, the full LFS system is built. The chroot (change root) program is used to enter a virtual environment and
start a new shell whose root directory will be set to the LFS partition. This is very similar to rebooting and instructing
the kernel to mount the LFS partition as the root partition. The system does not actually reboot, but instead chroot's
because creating a bootable system requires additional work which is not necessary just yet. The major advantage is
that “chrooting” allows you to continue using the host system while LFS is being built. While waiting for package
compilations to complete, you can continue using your computer as normal.
To finish the installation, the LFS-Bootscripts are set up in Chapter 7, and the kernel and boot loader are set up in
Chapter 8. Chapter 9 contains information on continuing the LFS experience beyond this book. After the steps in this
book have been implemented, the computer will be ready to reboot into the new LFS system.