三维人脸重建:SFM算法与匹配点优化
需积分: 50 127 浏览量
更新于2024-09-17
1
收藏 548KB PDF 举报
"基于SFM算法的三维人脸模型重建,王琨,郑南宁,西安交通大学人工智能与机器人研究所,2005年6月,国家‘八六三’高技术研究发展计划,国家自然科学基金资助,图像处理,三维重建,SFM算法,三维视觉,径向基函数,图像拼接"
本文提出了一种创新的方法,用于从两幅正面人脸图像和一幅侧面图像构建三维人脸模型。这种方法特别关注于寻找匹配点,这是整个重建过程的关键步骤。匹配点的准确性直接影响SFM(Structure from Motion)算法的结果。SFM算法是一种利用多个视角的图像来估计场景中物体三维结构的技术。
首先,算法涉及寻找图像中的匹配点。由于人脸图像往往包含低纹理和重复纹理区域,传统的角点匹配算法可能在此类场景中表现不稳定。为了克服这一问题,本文引入了考虑人脸几何对称性和规律性的策略,这些特性反映了人脸的共性特征,有助于更快速、准确地找到匹配点。
接下来,利用找到的匹配点,应用SFM算法计算出特征点的三维坐标,并构造一个稀疏的三维网格结构。这一步是三维重建的基础,它将二维图像信息转化为三维空间的点云数据。
然后,通过分步紧支撑径向基函数进行三维插值,将这些点云数据平滑并扩展成完整的三维模型。径向基函数是一种常用的插值方法,能够有效地处理非均匀分布的数据点,生成连续的表面。
最后,利用多分辨率图像拼接算法生成纹理图像,并将其映射到三维模型上,增加模型的真实感。这个步骤使得重建的人脸不仅有形状,还具有皮肤纹理,增加了视觉上的逼真度。
此方法的一个显著优势是它只需要普通相机拍摄的图像,就可以实现高质量的三维人脸重建,降低了设备要求,提高了方法的实用性。关键词包括三维重建、SFM算法、三维视觉、径向基函数以及图像拼接,涵盖了本文的核心技术和研究领域。这项工作得到了国家“八六三”高技术研究发展计划项目和国家自然科学基金的支持,展示了在人工智能、机器人以及图像处理领域的研究成果。
495 浏览量
234 浏览量
290 浏览量
281 浏览量
2022-06-11 上传
2022-06-27 上传
371 浏览量
749 浏览量
155 浏览量

小熊不去实验室
- 粉丝: 2634
最新资源
- 易酷免费影视系统:开源网站代码与简易后台管理
- Coursera美国人口普查数据集及使用指南解析
- 德加拉6800卡监控:性能评测与使用指南
- 深度解析OFDM关键技术及其在通信中的应用
- 适用于Windows7 64位和CAD2008的truetable工具
- WM9714声卡与DW9000网卡数据手册解析
- Sqoop 1.99.3版本Hadoop 2.0.0环境配置指南
- 《Super Spicy Gun Game》游戏开发资料库:Unity 2019.4.18f1
- 精易会员浏览器:小尺寸多功能抓包工具
- MySQL安装与故障排除及代码编写全攻略
- C#与SQL2000实现的银行储蓄管理系统开发教程
- 解决Windows下Pthread.dll缺失问题的方法
- I386文件深度解析与oki5530驱动应用
- PCB涂覆OSP工艺应用技术资源下载
- 三菱PLC自动调试台程序实例解析
- 解决OpenCV 3.1编译难题:配置必要的库文件